P\&S Processing-in-Memory

Real-World Processing-in-Memory Architectures:

> SK Hynix Accelerator-in-Memory

Dr. Juan Gómez Luna
Prof. Onur Mutlu
ETH Zürich

Spring 2022
14 April 2022

UPMEM Processing-in-DRAM Engine (2019)

- Processing in DRAM Engine
- Includes standard DIMM modules, with a large number of DPU processors combined with DRAM chips.
- Replaces standard DIMMs
- DDR4 R-DIMM modules
- 8GB+128 DPUs (16 PIM chips)
- Standard $2 x-n m$ DRAM process

- Large amounts of compute \& memory bandwidth

Recall: UPMEM PIM System Organization

- A UPMEM DIMM contains 8 or 16 chips
- Thus, 1 or 2 ranks of 8 chips each
- Inside each PIM chip there are:
- 8 64MB banks per chip: Main RAM (MRAM) banks
- 8 DRAM Processing Units (DPUs) in each chip, 64 DPUs per rank

FIMDRAM: Chip Structure

■ FIMDRAM based on HBM2

Chip Specification
128DQ / 8CH / 16 banks / BL4
32 PCU blocks (1 FIM block/2 banks)
1.2 TFLOPS (4H)

FP16 ADD /
Multiply (MUL) /
Multiply-Accumulate (MAC) /
Multiply-and- Add (MAD)
[3D Chip Structure of HBM with FIMDRAM]

FIMDRAM: System Organization (III)

- PIM units respond to standard DRAM column commands (RD or WR)
- Compliant with unmodified JEDEC controllers
- They execute one wide-SIMD operation commanded by a PIM instruction with deterministic latency in a lock-step manner
- A PIM unit can get 16 16-bit operands from IOSAs, a register, and/or the result bus

SK Hynix Accelerator-in-Memory

SK Hynix Accelerator-in-Memory (2022)

SKhynix newsroom

SK hynix Develops PIM, Next-Generation AI Accelerator

February 16, 2022

in f

Seoul, February 16, 2022

SK hynix (or "the Company", www.skhynix.com) announced on February 16 that it has developed PIM*, a nextgeneration memory chip with computing capabilities.
*PIM(Processing In Memory): A next-generation technology that provides a solution for data congestion issues for Al and big data by adding computational functions to semiconductor memory

It has been generally accepted that memory chips store data and CPU or GPU, like human brain, process data. SK hynix, following its challenge to such notion and efforts to pursue innovation in the next-generation smart memory, has found a breakthrough solution with the development of the latest technology

SK hynix plans to showcase its PIM development at the world's most prestigious semiconductor conference, 2022 ISSCC*, in San Francisco at the end of this month. The company expects continued efforts for innovation of this echnology to bring the memory-centric computing, in which semiconductor memory plays a central role, a step clos to the reality in devices such as smartphones.

11.1 A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep-Learning Applications Seongiu Lee, SK hynix, Icheon, Korea
Gb design achieves a peak throughput of 1TFLOPS with 1 GHz MAC operations and supports major activation functions to improve accuracy.
*ISSCC: The International Solid-State Circuits Conference will be held virtually from Feb. 20 to Feb. 24 this year with a theme of "Intelligent Silicon for a Sustainable World"

For the first product that adopts the PIM technology, SK hynix has developed a sample of GDDR6-AiM (Accelerator* in memory). The GDDR6-AiM adds computational functions to GDDR6* memory chips, which process data at 16Gbps. A combination of GDDR6-AiM with CPU or GPU instead of a typical DRAM makes certain computation speed 16 times faster. GDDR6-AiM is widely expected to be adopted for machine learning, high-performance computing, and big data

Accelerator-in-Memory (ISSCC 2022)

ISSCC 2022 / SESSION 11 / COMPUTE-IN-MEMORY AND

11.1 A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-inMemory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep-Learning Applications

Seongju Lee, Kyuyoung Kim, Sanghoon Oh, Joonhong Park, Gimoon Hong, Dongyoon Ka, Kyudong Hwang, Jeongje Park, Kyeongpil Kang, Jungyeon Kim, Junyeol Jeon, Nahsung Kim, Yongkee Kwon, Kornijcuk Vladimir, Woojae Shin, Jongsoon Won, Minkyu Lee, Hyunha Joo, Haerang Choi, Jaewook Lee, Donguc Ko, Younggun Jun, Keewon Cho, Ilwoong Kim, Choungki Song, Chunseok Jeong, Daehan Kwon, Jieun Jang, II Park, Junhyun Chun, Joohwan Cho

SK hynix, Icheon, Korea

AiM: Exploiting Bank Parallelism

- Memory bandwidth is not enough for many ML workloads

Onur Mutlu, "Memory-Centric Computing", Keynote Talk at the Thoughtworks Engineering for Research Symposium (E4R), Virtual, 19 February 2022.

AiM: Chip Implementation

- 4 Gb AiM die with 16 processing units (PUs)

AiM Die Photograph

1 Process Unit (PU) Area

Total	$0.19 \mathrm{~mm}^{2}$
MAC	$0.11 \mathrm{~mm}^{2}$
Activation Function (AF)	$0.02 \mathrm{~mm}^{2}$
Reservoir Cap.	$0.05 \mathrm{~mm}^{2}$
Etc.	$0.01 \mathrm{~mm}^{2}$

AiM: System Organization

- GDDR6-based AiM architecture

AiM Commands

AiM: Command Set

- New commands for computation

Type	CMD	Description
Bank Activation	ACT4, ACT16	Activate four/sixteen banks in parallel
	ACTAF4, ACTAF16	Activate rows storing activation function LUTs in four/sixteen banks in parallel
Compute	MACSB, MAC4B, MACAB	Perform MAC in one/four/sixteen banks in parallel
	AF	Compute activation function in all banks
	EWMUL	Perform element-wise multiplication
Data	WRBK	Write to all activated banks in parallel
	WRGB	Write to Global Buffer
	RDMAC	Read from MAC result register
	RDAF	Read from activation function result register
	WRBIAS	Write bias to MAC result register
	RDCP	Copy data from a bank to Global Buffer
	WRCP	Copy data from Global Buffer to a bank

AiM: Command Set: ACT4, ACT16

- Activate 4 or 16 banks at once

Activated Word Line

16-bank Active
4-bank Active

Type	cmD	Doscription
BankActivation	ACT4, ACT16	Activate foursixteoen banks in parallel
	ACTAF4, ACTAF16	Activate rows storing activation function LUTs in four/sixteen banks in parallel
Compute	macse, macab, MACAB	Perform MAC in oneffoursisiteen banks in paralel
	${ }^{\text {af }}$	Compute activation function in all banks
	EwnuL	Perform element-wise multipication
Data	WRBK	Write to all activated banks in parallel
	WRGB	Write to Global Buffer
	RDMAC	Read from MAC result register
	Rdaf	Read trom ativation function result register
	Wrbas	Write bias to MAC resulit register
	RDCP	Copy data fom a bank to Global Buffer
	WRCP	Copy data trom GIobal Buffer to a bank

Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for

AiM: Four Active Window ($\mathrm{t}_{\text {FAW }}$)

- ACT16 operations are possible without $\mathrm{t}_{\text {FAW }}$ constraint
- In normal DRAM only 4 ACT are possible every $t_{\text {faW }}$

- Reservoir capacitor in each PU

AiM: MAC Operation with Global Buffer

- MAC operation: Weights from the banks, vectors from the GB - Operates with 16, 4, or 1 PU

AiM: MAC Operation without Global Buffer

- MAC operation: Weights and vectors from the banks
- Operates with 8,4 , or 1 PU

AiM: Write Bias

- Biases can be added to MAC results
- Different biases in 16 banks at the same time

AiM: Activation Function

- Activation function (AF): MAC result as input

AiM: Read MAC / Read AF

- Read outside DRAM
- 16 banks $\times 16$ bits $=256$ bits

AiM: Element-wise Multiplication

- Multiplies weights and vectors
- The adder tree is disabled

AiM: Copy Operation

- Copy operation using GB as a intermediate buffer
- It copies 2 KB from one row to another row

Copy to Same Bank
Copy to Another Bank

AiM: Simultaneous Computation and Access

- Computation can be performed during normal read/write

AiM Microarchitecture

AiM: MAC Circuit

- 16 multipliers, adder tree, and accumulator
- Bfloat16 (BF16) format

AiM: MAC Circuit: Prior Work (I)

- 16 multipliers, adder tree, and accumulator

He et al, "Newton: A DRAM-maker's accelerator-in-memory (AiM) architecture for machine learning," MICRO 2020

AiM: MAC Circuit: Prior Work (II)

- 16 multipliers, adder tree, and accumulator

Shin et al, "McDRAM: Low latency and energyefficient matrix computations in DRAM," IEEE TCADICS (2018)

32 MAC Units in one Bank

BL BLOCK2	
Cell Array	Cell Array
-	-
MAC 2	MAC 3
$\begin{gathered} \text { DQ0 ~ } \\ \text { DQ7 } \end{gathered}$	$\begin{aligned} & \text { DQ8~ ~ } \\ & \text { DQ15 } \end{aligned}$
BL2	

Lecture on SIMD Processing

© department of information technology and electrical engineering (d-IteT)
Digital Design \& Comp. Arch. - Lecture 20: SIMD Processing (Vector and Array Processors) (Spring'21)
2,677 views • Streamed live on May 14, 2021

Lecture on SIMD Processing and GPUs

HetSys Course: Lecture 2: SIMD Processing and GPUs (Spring 2022)
380 views • Premiered Mar 22, 2022

Onur Mutlu Lectures
23.6 K subscribers

Project \& Seminar, ETH Zürich, Spring 2022
Hands-on Acceleration on Heterogeneous Computing Systems (
https://safari.ethz.ch/projects_and_s...)

Parallel Reduction on GPU

Heterogeneous Systems Course: Meeting 6: Parallel Patterns: Reduction (Fall 2021)

411 views • Streamed live on Nov 11, 2021

Onur Mutlu Lectures

20.1K subscribers

SUBSCRIBED

Project \& Seminar, ETH Zürich, Fall 2021
Hands-on Acceleration on Heterogeneous Computing Systems (
https://safari.ethz.ch/projects_and_s...)

AiM: Adder Tree: Bank-wide Mantisa Shift (I)

- Bank-wide Mantisa Shift (BWMS)
- Find MAX EX of 16 EXs
- Obtain the differences
- Shift all MAs by the differences
- Perform MA additions

AiM: Adder Tree: Bank-wide Mantisa Shift (II)

- Bank-wide Mantisa Shift (BWMS)
- Find MAX EX of 16 EXs
- Obtain the differences
- Shift all MAs by the differences
- Perform MA additions

AiM: Accumulation Operation

- Up to 64 MAC commands between ACT
- 1 MAC every 1 ns ($\mathrm{t}_{\text {ccDs }}$)
- 64×256 bits $=2 \mathrm{~KB}$ (row size)

AiM: Accumulation Operation

- Up to 64 MAC commands between ACT
- 1 MAC every 1 ns ($\mathrm{t}_{\text {ccDs }}$)
- 64×256 bits $=2$ KB (row size)

Min. 1ns
Min. 1ns

AiM: Multi-latch Operation

- Save writes with selectable latches

Write V0	$\begin{gathered} \text { MAC } \\ \text { W0 x V0 } \end{gathered}$	Write V1	$\begin{gathered} \text { MAC } \\ \text { W1 } \times \text { V1 } \end{gathered}$	Write V0

Operation Sequence without Multi-Latch

Operation Sequence with Multi-Latch

AiM: Activation Functions (I)

- Two types of activation functions
- Calculation: ReLU, Leaky ReLU
- With LUT: Sigmoid, GELU, Tanh, arbitrary AF

AiM: Activation Functions (II)

- LUT (512 values) + Linear interpolation
- Mode set register (MSR) to select AF

512 Steps \qquad the number of inputs in the LUT is limited to 512

AiM: Key Feature Summary

- Comparison table

[^0]
Upcoming Lectures

- More real-world PIM architectures
- Programming PIM systems
- More on workload characterization for PIM suitability
- PUM architectures and prototypes

P\&S Processing-in-Memory

Real-World Processing-in-Memory Architectures:

> SK Hynix Accelerator-in-Memory

Dr. Juan Gómez Luna
Prof. Onur Mutlu
ETH Zürich

Spring 2022
14 April 2022

[^0]: Lee et al., A 1ynm $1.25 \mathrm{~V} 8 \mathrm{~Gb}, 16 \mathrm{~Gb} / \mathrm{s} / \mathrm{pin}$ GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for

