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UPMEM Processing-in-DRAM Engine (2019)
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n Processing in DRAM Engine 
n Includes standard DIMM modules, with a large 

number of DPU processors combined with DRAM chips.

n Replaces standard DIMMs
q DDR4 R-DIMM modules

n 8GB+128 DPUs (16 PIM chips)
n Standard 2x-nm DRAM process

q Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

CPU
(x86, ARM, RV…)

DDR
Data bus

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/
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Recall: UPMEM PIM System Organization
• A UPMEM DIMM contains 8 or 16 chips

- Thus, 1 or 2 ranks of 8 chips each

• Inside each PIM chip there are:
- 8 64MB banks per chip: Main RAM (MRAM) banks
- 8 DRAM Processing Units (DPUs) in each chip, 64 DPUs per 
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FIMDRAM: Chip Structure

4Kwon et al., A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for 
Machine Learning Applications, ISSCC 2021



FIMDRAM: System Organization (III)
n PIM units respond to standard DRAM column commands 

(RD or WR)
q Compliant with unmodified JEDEC controllers

n They execute one wide-SIMD operation commanded by a 
PIM instruction with deterministic latency in a lock-step 
manner

n A PIM unit can get 16 16-bit operands from IOSAs, a 
register, and/or the result bus

5Lee et al., Hardware Architecture and Software Stack for PIM Based on Commercial DRAM Technology, ISCA 2021
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SK Hynix Accelerator-in-Memory (2022)
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With advances in deep-neural-network applications the increasingly large data movement 
through memory channels is becoming inevitable: specifically, RNN and MLP 
applications are memory bound and the memory is the performance bottleneck [1]. 
DRAM featuring processing in memory (PIM) significantly reduces data movement 
[1,2,3,4], and the system performance is enhanced by the large internal parallel bank 
bandwidth. Among DRAM-based PIM proposals, [3] is near commercialization, but the 
required HBM technology may prevent it from being applied to other applications due to 
its high cost [5]. In this situation, an accelerator-in-memory (AiM) based on GDDR6 may 
be applicable: it has a relatively low-cost, is compatible with GDDR6 interface, and is 
designed to accelerate deep-learning (DL) applications. AiM offers a peak throughput of 
1TFLOPS with processing units (PUs) with a speed of 1GHz utilizing the characteristics 
of GDDR6 with a speed of 16Gb/s. It can also support many applications as it has various 
activation functions. This paper first looks at the AiM architecture and the supported 
command set for DL operations. Next, the DL operations in the PU and supported 
activation functions are described. Finally, we present evaluation results of DL behavior 
of AiM at the package and the system level. 
 
Figure 11.1.1 shows the architecture of the 4Gb AiM. Compared to GDDR6, AiM has PUs 
for DL operation near the DRAM cells and a 2KB global buffer (GB) for temporary data 
storage. There are 16 PUs, one for each of the 16 banks; they receive data from DRAM 
cells and the GB to perform DL operations. The PU operates at 1GHz, which is tCCDS (2tCK) 
of GDDR6,  and one PU has a throughput of 32GFLOPs. The top of Fig. 11.1.2 is the new 
command (CMD) set for the DL operation. AiM uses the same CMD set as GDDR6, but 
has additional CMDs for DL operations. Because AiM performs normal or DL operation 
based on CMD, long latency required due to mode change is unnecessary, and two 
operations can be quickly switched via CMD. So, it is possible to perform a DL operation 
during normal read/write operation. The PU performs multiply-accumulate (MAC) 
operation that performs matrix product of weights and vectors, element-wise 
multiplication operation that multiplies weights and vectors respectively, and activation 
functions that increase DL accuracy through non-linear functions. For MAC operations, 
it can be performed by receiving weights and vectors from bank and GB, respectively, or 
by receiving weights from an even bank and receiving vectors from an odd bank without 
GB. In the former case, 16, 4, or 1 PUs can operate, and in the latter case, 8, 4, or 1 PUs 
can operate. In addition, it is possible to perform copy operation using GB, which copies 
2KB of data corresponding to one row to another, and write bias operation, which adds 
bias to the DL result. 
 
When MAC CMD is applied once, 256b weights and vectors are output from each column 
of the bank and GB, and matrix multiplication operation is performed in the MAC circuit 
of the PU. Figure 11.1.3 shows the structure of the MAC circuit of the PU located in one 
bank. The MAC circuit consists of 16 multipliers that multiply weights and vectors, an 
adder tree that adds 16 multiplier outputs into one, and an accumulator. Weights and 
vectors entering the multiplier use Bfloat16 (BF16) format which is more suitable than 
FP16 format in the DL operation [6]. BF16 consists of 1b sign (S), 8b exponent (EX), 
and 7b mantissa (MA). The 7b MA in which hidden bit is omitted becomes 8b by adding 
a hidden bit in the internal circuit. Two 8b MA are multiplied by multiplier to 16b, and 
then the fractional part of MA is extended to 23b in a shift circuit to improve accuracy. 
As the number of bits of MA increases, from the adder tree, the calculation is extended 
to the FP32 system, not the BF16. Adding 16 multiplier outputs into one requires a 
floating-point add operation for every 2 outputs. When performing floating-point add 
operation, it goes through a series of processes of EX comparison, shifting the digits of 
the MA, and add of the MA operations. Performing these processes in each of the 4 
stages of the adder tree consumes too much power, computation time, and area. In order 
to solve these problems, as shown in Fig. 11.1.3 below, a bank-wide MA shift (BWMS) 
scheme was proposed that compares 16 EXs from the output of the multipliers to find 
the maximum EX and completes the shift of all MA at once. Within 16 shifters, each EX 
is subtracted from the max EX to obtain the differences, and each MA is shifted as much 
as the difference. In the 4 stages of the adder tree, only simple MA addition is performed 

in the MA add unit (MAU) without the EX comparison and MA shift operations. The 
BWMS scheme reduces power consumption, computation time, and area of the adder 
tree by 66%, 52%, and 75% respectively, compared to the use of floating-point adders 
for each addition operation. The structure allowed a large amount of space to be filled 
with the reservoir capacitor as the PU became smaller. Owing to reservoir capacitors, 
16 bank parallel active operations by ACT16 CMD are possible and this CMD can be given 
without the constraint of tFAW, a specification that limits active operation in DRAM. One 
PU containing the reservoir capacitor has an area of 0.19mm2. 
 
The results calculated in the multipliers and the adder tree are added cumulatively in the 
accumulator. Accumulation occurs as many times as MAC CMD is given, as shown in 
Fig. 11.1.4, and MAC CMD can be continuously applied at tCCDS intervals as many as 64 
times, the number of column addresses, while one word line is activated. Another active 
command is required for accumulation exceeding 64 MAC CMDs. Since the accumulation 
requires the completion of one action before the next data enters, it is completed within 
1ns. As shown at the bottom of Fig. 11.1.4, if the vector size exceeds 2KB and there are 
two groups of weights to be multiplied by the vector, a total of 4 vector write operations 
may be required. Since vector write requires a large amount of data movement through 
the memory channel, it can cause large current consumption. As can be seen from the 
MAC structure in Fig. 11.1.3, it has two selectable latches to store the accumulation 
result, so that the matrix multiplication can be performed by writing the vector only twice. 
 
As shown in Fig. 11.1.5, AiM supports various activation functions (AFs). Sigmoid, 
hyperbolic tangent, GELU, ReLU, and leaky ReLU are supported by default, and arbitrary 
AFs can be used by programming. In the case of ReLU and Leaky ReLU, the result values 
are processed in the internal circuits using MAC results. For sigmoid, hyperbolic tangent, 
and GELU, the result value f(x) of each function is written on the reserved row of each 
bank, and when input x is received, it is used as a lookup table (LUT) to output the result. 
The MAC result is decoded to be the column address corresponding to x, the input of 
the LUT. In addition to these three AFs, it is also possible to use any AF by programming 
it into the AF word line. Since the number of inputs in the LUT is limited to 512 and the 
number of MAC results exceeds that, it is necessary to obtain f(k) for any value of k that 
does not belong to 512 units. So, A value adjacent to k of 512 inputs is entered into 
input, f(A) and f(A+1) are output from the LUT, and two values are linearly interpolated 
to obtain f(k). The linear interpolation allows more accurate function values to be output 
in a limited number of inputs.  
 
Figure 11.1.6 shows the feature summary and the measurement results. The upper-left 
Shmoo plot shows that 16Gb/s is reached at 1.25V in DL operation. An FPGA-based 
platform was developed to estimate AiM system-level performance improvement; the 
memory interface runs at 2Gb/s/pin, due to FPGA IO limitations. The system-level 
performance estimation shows up to a 10× speed improvement, compared to the GPU 
system with HBM2, by the exploited bank-level parallelism. A flat-lid package is used to 
mitigate the temperature increase. As shown in the lower left of Fig. 11.1.6,  the thermal 
resistance of the flat-lid package is 89% less than a normal over-mold package. Figure 
11.1.7 shows the full chip micrograph, a picture of the flat lid package, and the emulation 
system including the FPGA. 
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AiM: Exploiting Bank Parallelism
n Memory bandwidth is not enough for many ML workloads

9Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for 
Deep-Learning Applications, ISSCC 2022
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Concept of Processing in Memory (PIM)

CPU/GPU

Control Unit

Logic Unit

DRAM

Memory Cell

CPU/GPU

Control Unit

Logic Unit

PIM

Memory Cell

Logic UnitBandwidth
Limitation

Large Internal 
Bandwidth

Von Neumann architecture System architecture using PIM

� Advances in deep-neural-network cause a lot of data movement in memory channels 
� The performance is severely degraded due to the channel bandwidth limitation
� Processing in memory (PIM) is a new architecture to improve system performance

Processor-centric system Memory-centric system

Onur Mutlu, "Memory-Centric Computing”, Keynote Talk at the Thoughtworks Engineering for Research Symposium (E4R), Virtual, 19 February 2022.

https://people.inf.ethz.ch/omutlu/pub/onur-ThoughtWorks-e4r-Keynote-MemoryCentricComputing-February-19-2022.pptx


AiM: Chip Implementation
n 4 Gb AiM die with 16 processing units (PUs)

10Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for 
Deep-Learning Applications, ISSCC 2022
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Chip Implementation

� An 4Gb aim die photograph with 16 processing units
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AiM: System Organization
n GDDR6-based AiM architecture

11Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for 
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AiM Architecture

� AiM Architecture with 16 processing units (PUs) for deep-learning operations 
near DRAM cells and a 2KB global buffer (GB) for temporary data storage
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AiM Architecture

� AiM Architecture with 16 processing units (PUs) for deep-learning operations 
near DRAM cells and a 2KB global buffer (GB) for temporary data storage
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AiM Architecture

� AiM Architecture with 16 processing units (PUs) for deep-learning operations 
near DRAM cells and a 2KB global buffer (GB) for temporary data storage
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AiM: Command Set
n New commands for computation

13Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for 
Deep-Learning Applications, ISSCC 2022



AiM: Command Set: ACT4, ACT16
n Activate 4 or 16 banks at once

14Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for 
Deep-Learning Applications, ISSCC 2022
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Activate 16/4 banks in parallel

� Commands for activating 16 / 4 banks simultaneously for the bank parallel operation

Activated Word Line

16-bank Active 4-bank Active 

11.1: A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep Learning Applications© 2022 IEEE 
International Solid-State Circuits Conference 10 of 42

Activate 16/4 banks in parallel

� Commands for activating 16 / 4 banks simultaneously for the bank parallel operation

Activated Word Line

16-bank Active 4-bank Active 



AiM: Four Active Window (tFAW)
n ACT16 operations are possible without tFAW

constraint
q In normal DRAM only 4 ACT are possible every 

tFAW
q Reservoir capacitor in each PU

15Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for 
Deep-Learning Applications, ISSCC 2022
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Four Active Window (tFAW ) Free Operation

Power, Computation Time, and Area of Adder Tree

Effects of BWMS 
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� The BWMS scheme reduces
z Power consumption by 66%
z Computation time by 52%
z Area by 75%

� Four Active Window (tFAW ) free operation
z Saved area is filled with a reservoir Cap.
z Reservoir Cap. makes ACT16 operations 

possible without tFAW constraint



AiM: MAC Operation with Global Buffer
n MAC operation: Weights from the banks, vectors from the GB
n Operates with 16, 4, or 1 PU

16Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for 
Deep-Learning Applications, ISSCC 2022
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MAC Operation with Global Buffer (GB)
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MAC Operation with Global Buffer (GB)
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� Multiply-Accumulate (MAC) that performs matrix product of weights and vectors
� Receiving weights from the bank and vectors from the GB
� 16, 4, or 1 PUs can operate

...
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AiM: MAC Operation without Global Buffer
n MAC operation: Weights and vectors from the banks
n Operates with 8, 4, or 1 PU
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MAC Operation without Global Buffer (GB)
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BK3 W[3][0] W[3][1] W[3][2] W[3][3] W[3][n-1]

BK15 W[15][0] W[15][1] W[15][2] W[15][3] W[15][n-1]

....
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MAC_OUT[0]

MAC_OUT[1]

MAC_OUT[2]

MAC_OUT[3]

MAC_OUT[15]

=

...

n
16bit

Weight MAC OUT

...

� Multiply-Accumulate (MAC) that performs matrix product of weights and vectors

� Receiving weights and vectors from the two banks

� 8, 4, or 1 PUs can operate
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MAC Operation without Global Buffer (GB)
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� Multiply-Accumulate (MAC) that performs matrix product of weights and vectors

� Receiving weights and vectors from the two banks

� 8, 4, or 1 PUs can operate



AiM: Write Bias
n Biases can be added to MAC results

q Different biases in 16 banks at the same time
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Write Bias - MAC Operation
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� Biases can be added to MAC operation results
� Different biases can be applied to 16 banks at the same time
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Write Bias - MAC Operation
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� Biases can be added to MAC operation results
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AiM: Activation Function
n Activation function (AF): MAC result as input
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Activation Function (AF)

� A non-linear function that increases deep learning accuracy
� Perform activation function that receives MAC results as input

16b

Activation Function
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MAC_OUT[1]

MAC_OUT[2]

MAC_OUT[3]

MAC_OUT[15]

...

MAC OUT

... ...
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Activation Function (AF)

� A non-linear function that increases deep learning accuracy
� Perform activation function that receives MAC results as input

16b

Activation Function
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Read MAC / Read AF

� Reading MAC/AF results of 16 PUs outside the DRAM
� A total of 256-bit data per die are output
z Very small number compared to the data used in the calculation
z Data movement is significantly reduced compared to reading and calculating data with the processor

16b

16b

16b

16b

16b
64b

P U

P U P U

P U

...

DQ0

DQ1

DQ14

DQ15

DQ12

DQ13

DQ10

DQ11

...

BL0 BL1 BL2 BL3 BL4 BL5 BL6 BL7 BL8 BL9 BL10 BL11 BL12 BL13 BL14 BL15

BK0
16-bit 
Output 62.5ps

AiM: Read MAC / Read AF
n Read outside DRAM

q 16 banks x 16 bits = 256 bits
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Read MAC / Read AF

� Reading MAC/AF results of 16 PUs outside the DRAM
� A total of 256-bit data per die are output
z Very small number compared to the data used in the calculation
z Data movement is significantly reduced compared to reading and calculating data with the processor
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AiM: Element-wise Multiplication
n Multiplies weights and vectors

q The adder tree is disabled
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Element-Wise Multiplication 
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� Element-wise multiplication operation multiplies weights and vectors 
� Only multipliers in the PU operate  
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Element-Wise Multiplication 
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� Element-wise multiplication operation multiplies weights and vectors 
� Only multipliers in the PU operate  
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AiM: Copy Operation
n Copy operation using GB as a intermediate buffer

q It copies 2 KB from one row to another row
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Copy Operation
Copy to Same Bank Copy to Another Bank

� Copy operation using GB
� Copies 2KB of data corresponding to 

one row to another
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AiM: Simultaneous Computation and Access
n Computation can be performed during normal read/write
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MAC Operation during Normal Operation 
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Normal Read

� Normal and DL operations can be quickly switched via CMD
� DL operation can be performed during normal read/write operation

Min. 4ns
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MAC Operation during Normal Operation 
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� Normal and DL operations can be quickly switched via CMD
� DL operation can be performed during normal read/write operation
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AiM Microarchitecture
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AiM: MAC Circuit
n 16 multipliers, adder tree, and accumulator

q Bfloat16 (BF16) format

25Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep-Learning Applications, ISSCC 2022
Kalamkar et al., A Study of BFLOAT16 for Deep Learning Training, arXiv (pre-print), id. 1905.12322, 2019
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MAC Circuit Architecture

� MAC circuit architecture performing matrix product of weights and vectors
� Each weight and vector as input data is Bfloat16 (BF16) data type
� MAC circuit consists of 16 multipliers, an adder tree, and an accumulator 

Sign (S) 1b Exponent (EX) 8b Mantissa (MA) 7b

Bfloat16 (BF16) Format
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� 16 multipliers : 

Multiply weights and vectors

� An adder tree : 

Adds all 16 multiplier outputs 

� An accumulator : 

Sequentially Adds the outputs 

of the adder tree



AiM: MAC Circuit: Prior Work (I)
n 16 multipliers, adder tree, and accumulator

26Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for 
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MAC Circuit Architecture

� MAC circuit architecture performing matrix product of weights and vectors
� Each weight and vector as input data is Bfloat16 (BF16) data type
� MAC circuit consists of 16 multipliers, an adder tree, and an accumulator 

Sign (S) 1b Exponent (EX) 8b Mantissa (MA) 7b

Bfloat16 (BF16) Format

Fig. 3. AiM Tiling for DRAM with 16 banks and 1 KB DRAM row size

bandwidth; (c) deterministic operation even for floating–point
compute commands to avoid handshake overhead; and (d)
targeted reduction of command overhead. Finally, to exploit
output vector reuse with minimal output buffering, Newton
employs a DRAM row-wide interleaved layout of the filter
matrix, We start with a single channel for simplicity and extend
to multiple channels later.

A. Interleaved layout for the filter matrix

While the matrix is resident in the DRAM, the input vector
is broadcast to the banks. Each element of the output vector
is computed by multiplying a matrix row and the input vector.
The input vector is multiplied by every matrix row (i.e., the
input vector has high reuse but the matrix has no reuse). To
capture this reuse in full, Newton employs a simple interleaved
layout for the matrix. Because each matrix row is accessed one
DRAM column access at a time, the idea is to hold a chunk
of the input vector elements and completely reuse the input
elements with all the matrix rows before moving on to the
next set of input elements so that the same input elements are
never re-fetched. Accordingly, the matrix rows are laid out
in a chunk-interleaved manner, where the first matrix row’s
first chunk is followed by the second matrix row’s first chunk,
and so on. Upon filling the DRAM row of one bank, this
interleaving continues to the next bank for maximizing reuse
(e.g., each 1-KB DRAM row has a chunk of one of the matrix
rows). Figure 3 assumes 16 banks and DRAM rows with
16x512 bits = 8 Kb = 1 KB so that 1 KB each of the first
16 matrix rows are mapped to the 16 banks. We discuss the
schedule of the computation later in Section III-C. If there
are more matrix rows than the banks then the interleaving
continues in later DRAM rows in the banks. The first chunk
of all the matrix rows is followed by the second chunk of
all the matrix rows, and so on. One would expect the chunk
width to equal the column-access width to capture column-
access parallelism while keeping the input buffering as small
as possible (e.g., 16 16-bit elements, which is 256 bits).
However, each chunk is actually as wide as a DRAM row
to reduce the output buffering as explained in Section III-C;
input buffering reduction is also explained in Section III-C. We
assume 16-bit floating-point data because our customers and
partners stipulate that recommendation systems, unlike CNNs,

Fig. 4. Newton Datapath

need high accuracy (e.g., 0.1% accuracy difference matters for
revenue).

Finally, AiM memory can be used as normal memory and
can hold non-AiM data. However, for ease of timing explained
later in Section III-C, AiM and non-AiM data can be in the
same bank but not in the same DRAM row.

B. Newton organization

Newton employs k multipliers per bank to match each
bank’s column-access bandwidth (e.g., k = 16), as shown
in Figure 4. The multipliers are implemented using DRAM-
technology transistors. Because of area constraints, Newton
does not employs as many multipliers as needed to cover
an entire DRAM row whose data is accessed anyway only
a DRAM column access at a time as a trade-off in DRAM
design between access bandwidth and area (not specific to
AiM). Newton’s strategy captures all the internal DRAM band-
width as the multipliers are rate-matched to the column-access
bandwidth (i.e., all the column access data multiplications are
complete under the column access latency).

The matrix row and the input vector chunks are multiplied
(e.g., 16 elements at a time in any given bank) and reduced
through a pipelined adder tree (Figure 4). The host retrieves
the latched result of the tree. It may seem that this reduction
tree may incur extra area compared to an approach where the
matrix is laid out in column-major format so that the different
matrix rows in each column access would be multiplied by the
input vector (e.g., each DRAM row would hold matrix rows
in an element-interleaved manner where the first element of
the 16 matrix rows would be followed by the matrix rows’
second element, and so on). Then, there would simply be 16

���
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n 16 multipliers, adder tree, and accumulator
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MAC Circuit Architecture

� MAC circuit architecture performing matrix product of weights and vectors
� Each weight and vector as input data is Bfloat16 (BF16) data type
� MAC circuit consists of 16 multipliers, an adder tree, and an accumulator 

Sign (S) 1b Exponent (EX) 8b Mantissa (MA) 7b

Bfloat16 (BF16) Format

Shin et al, "McDRAM: Low latency and energy-
efficient matrix computations in DRAM," IEEE 
TCADICS (2018)
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Fig. 2. MV multiplication on McDRAM.

without additional control overhead. The results of 64 MAC
units can be accumulated via a per-BL-block adder tree.1

In the case of placing MAC units at column decoder, as
will be explained in more detail in Section III-C, we can place
32 MAC units on a bank, i.e., 256 MAC units on a DRAM
die. To be specific, we can place two 8-bit MAC units and a
16-bit adder in the column decoder of a BL block. The case
of I/O driver location can place 2 MAC units per bank, i.e.,
16 MAC units on a DRAM die.

As will be shown in our quantitative comparison, the option
of BLSA can offer the most available bandwidth at a signifi-
cant overhead of area and power consumption. The I/O driver
option incurs the smallest area overhead and allows us to avoid
power-hungry off-chip traffics. However, there is no bandwidth
advantage since the available bandwidth is the same as that of
conventional DRAM.

III. MCDRAM ARCHITECTURE

In this section, we describe the McDRAM architecture in
an LPDDR4-based realization including the working of MV
multiplication (Section III-A), data broadcast (Section III-B),
MAC units in column decoder (Section III-C), and McDRAM
commands (Section III-D).

A. Matrix-Vector Multiplication on McDRAM

Fig. 2 shows the dataflow of MV multiplication
on McDRAM architecture. For simplicity, we assume
an McDRAM based on an ×8 DRAM having 4 banks, the
burst size of 4, and four 8-bit MAC units per bank. The
matrix on the left of the figure corresponds to the weights of
an FC layer of NN and the input vector the input activations
of the FC layer.

All the data are stored in the DRAM before the multiplica-
tion operation is performed. Fig. 2 illustrates how the weights
are stored on the four banks. For instance, the first (second)
row of matrix is stored in bank A (B). The figure shows the
four MAC units of bank A at the top.

1When enabling multiple wordlines (WLs) in DRAM at a time, the tRFC
parameter is needed to prevent data fault caused by cross talk. Activating
64 WLs takes longer latency of activation than the existing tRFC. The 8 Gb
and 16 Gb DRAMs have tRFC of 280 and 380 ns, respectively. The DRAM
requires about 100 ns to enable WL twice, so the minimum time required to
enable 64 WLs is set to 580 ns.

MV multiplication is performed by running multiple dot-
product operations between rows of the matrix and the input
vector in parallel. In the example of Fig. 2, four banks perform
dot-product operations in parallel. The figure illustrates how
McDRAM performs the dot-product operation of the first row
of matrix and the input vector. First, the four input activations
(BL0–BL3 in the figure) are broadcast to the 16 MAC units
of four banks (utilizing a broadcast command, BRO as will be
explained later). The upper part of the figure shows the four
MAC units (MAC0–MAC3) of bank A. At the same time, the
four weights are read from each bank to its associated four
MAC units. Then, four multiplications and accumulations are
performed in parallel (by a command, MAC). Note that all
the MAC units of the four banks run in parallel. Then, as the
dashed arrows show, the next chunk of input vector, i.e., the
next four input activations are broadcast to the MAC units of
all the banks while the next four weights are read from each
bank to the associated MAC units. This procedure continues
until the dot-product operation finishes.

In Fig. 2, after finishing the current four dot-product oper-
ations, the four banks produce four output activations (by
commands, SUM and OUT). Then, we move to the next sets
of weight rows, 5th–8th rows of the weight matrix and perform
dot-product operations in the same way. After completing all
the dot-product operations, McDRAM produces, as the result,
the output activations of the FC layer.

Note that the input vector can be broadcast multiple times
to the banks for the dot-product operations between the
new weights and the input vector. In the option of column
decoder, the input vector is broadcast ceiling(# matrix rows/#
banks) times. Multiple broadcast of the same input vector can
increase power consumption due to off-chip traffic. As will be
explained in Section III-B, we propose utilizing a buffer called
vector buffer to reuse the same input vector thereby avoiding
duplicated off-chip traffics.

Note that McDRAM is not limited to inference. McDRAM
can be utilized to accelerate matrix multiplications in training
when training can be performed in 8-bit arithmetics [18], [19].

B. Data Broadcast

Fig. 3 shows the data broadcast path between the memory
controller and eight LPDDR4 chips2 in a single McDRAM
package. Each LPDDR4 chip has 8 banks and a 16-bit
interface. Thus, all the 8 banks of a DRAM chip are connected
to the interface. Fig. 3 shows a 4-channel LPDDR4 package
where the interfaces of two DRAM chips are connected to a
16-bit channel bus, e.g., CH-A. Thus, the memory controller
on the CPU side accesses the eight LPDDR4 chips via 4 16-bit
independent channels (CH-A–CH-D).

Note that we try to minimize data transfer for the matrix
data. It is because the size of matrix data, i.e., weights is large
and they are utilized only once in MV multiplication. Thus,
we minimize data transfer by fetching the matrix data from
memory cells to the MAC units. The input vector is read by
the CPU and then broadcast to the MAC units on the DRAM
banks. In order to broadcast the vector data to the MAC units,

2We use two terms, chip and die, interchangeably.
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Fig. 3. Data broadcast path.

Fig. 4. 32 MAC units in a bank.

the memory controller writes the same vector data to four
channels at the same time. Since the BL of LPDDR4 is 16, the
granularity of data transfer, i.e., vector broadcast on a 16-bit
channel is 32 (=16*2) bytes.

As shown in Fig. 3, the interface of DRAM chip is equipped
with a buffer (called vector buffer) to keep the vector data in
order to reduce off-chip traffics by exploiting their reuse
behavior. In our experiments, we use a buffer of 2 KB, which
incurs a very small area overhead (0.11% in the 20 nm DRAM
process). The vector buffer is useful in reducing costly off-
chip traffics in broadcasting the vector data to MAC units.
The DRAM interface is also equipped with aggregation logic,
i.e., 16-bit global adder trees for sum operation, which will be
explained in Section III-C.

C. MAC Units in Column Decoder

Fig. 4 illustrates a DRAM bank in McDRAM where MAC
units are placed at column decoder. As shown in the figure,
a bank has 16 BL blocks and each BL block is equipped
with two 8-bit MAC units. Thus, an LPDDR4 DRAM chip
is equipped with 256 (=8 banks*16 BL blocks/bank*2 MAC
units/BL block) MAC units. A single McDRAM chip package,
which consists of eight DRAM chips, has total 2048 MAC
units. In our realization of McDRAM, MAC units run at
250 MHz since a single burst data transfer can be performed
every 4 ns (tCCD, CAS to CAS delay [16]).

The MAC unit has two inputs: one from the cell array (for
the matrix) and the other from the vector buffer (for the vector)

Fig. 5. MAC unit connected to IOSA in column decoder.

located in the DRAM interface. Before computation, all MACs
are reset by the reset signal (Reset). After computation, upon
receiving the E_Out signal (controlled by the memory com-
mand) shown in the figure, the MAC unit results are sent to
a global adder tree (to be explained later in this section).

Fig. 5 shows the circuitry of 8-bit MAC unit, IOSA, and
their interconnections in the column decoder. The 8-bit MAC
unit has two 8-bit inputs, weight and broadcast in the figure.
The 8-bit weight input is connected to 8 IOSAs. The figure
shows the interconnection between one input bit of weight
and one IOSA. Thus, the matrix data read from the memory
cells (via GIO and GIOB signals in the figure) can arrive
at the weight input. The broadcast input is connected to the
external input, DATA_IN. The broadcast vector data arrive
from the vector buffer to the broadcast input. Note that the
granularity of data transfer, i.e., BL is 16 in LPDDR4 DRAM
where each BL block transfers 16 bits in a burst. Thus, we
place two 8-bit MAC units each of which receives 8 bit
data in the 16 bit data of the associated BL block. Upon
receiving a pair of 8-bit matrix and vector data, each of
the two MAC unit performs one 8-bit multiplication and
accumulates the result with its partial sum.

Each bank is equipped with an adder tree. It is used to
sum the partial products of MAC units on 16 BL blocks and
produce the result of dot-product operation. After the vector
input is completely delivered to the MAC units, each BL block
obtain its own partial sum. The adder tree aggregates the par-
tial sums to produce an output data of dot-product operation,
i.e., an element of output vector in MV multiplication.

D. McDRAM Commands

The software interface of McDRAM is a simple function of
MV multiplication. When the function is called by the software
program, e.g., Caffe, TensorFlow, etc., the device driver sets
the control registers of memory controller. Then, the memory
controller is in charge of controlling McDRAM to complete
the MV multiplication.

McDRAM has two modes, memory and compute modes,
set by a configuration register. In compute mode, McDRAM
can perform MV multiplication. In order to control MV mul-
tiplication in compute mode, we introduce six new DRAM
commands as shown in Table I. As will be explained later, we
utilize existing I/O signals of DRAM. Thus, no modification
of DRAM I/O signals is required for the new commands.
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AiM: Adder Tree: Bank-wide Mantisa Shift (I)
n Bank-wide Mantisa Shift (BWMS)

q Find MAX EX of 16 EXs
q Obtain the differences
q Shift all MAs by the differences
q Perform MA additions
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� Adding all 16 multiplier outputs :
z Requires 4 stages of floating-point addition 
z Consumes too much power, computation time, and area         

Adder Tree - Conventional 



AiM: Adder Tree: Bank-wide Mantisa Shift (II)
n Bank-wide Mantisa Shift (BWMS)

q Find MAX EX of 16 EXs
q Obtain the differences
q Shift all MAs by the differences
q Perform MA additions
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WV[8] WV[9] WV[10] WV[11] WV[12] WV[13] WV[14] WV[15]

EX8 EX9 EX10 EX11 EX12 EX13 EX14 EX15
MA8 MA9 MA10 MA11 MA12 MA13 MA14 MA15

S8 S9 S10 S11 S12 S13 S14 S15

Adder Tree Out

Exponent
Comparator

Mantissa 
Shifter

Mantissa 
Shifter

S14, MA14 S15, MA15 

S1415, MA1415 EX01

1st. Stage

2nd. Stage

3rd. Stage

4th. Stage

1st. 2nd. 3rd. 4th.

Conv.
Adder 
Tree

Computation Time 

EX Comp.

MA Shft.

MA Add

� Adding all 16 multiplier outputs :
z Requires 4 stages of floating-point addition 
z Consumes too much power, computation time, and area         

Adder Tree - Conventional 
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Shifter

MAX EX

Exponent
Comparator

Mantissa 
Shifter

EX15 S15, MA15

EX_DIFFERENCE

S0_SFT, MA0_SFT (FP32)

WV[15] = S15, EX15, MA15 

1, 16

1, 24

MAX EX
SHFT

[0]

Adder

SHFT
[1]

SHFT
[2]

SHFT
[3]

SHFT
[4]

SHFT
[5]

SHFT
[6]

SHFT
[7]

SHFT
[8]

SHFT
[9]

SHFT
[10]

SHFT
[11]

SHFT
[12]

SHFT
[13]

SHFT
[14]

SHFT
[15]

MAU MAU MAU MAU

MAU MAU

MAU

MAU MAU MAU MAU

MAU MAU

MAU

MAU

Adder Tree Out

16-EXP
Comp.

EX0~15
WV[0] WV[1] WV[2] WV[3] WV[4] WV[5] WV[6] WV[7]

EX0 EX1 EX2 EX3 EX4 EX5 EX6 EX7
MA0 MA1 MA2 MA3 MA4 MA5 MA6 MA7

S0 S1 S2 S3 S4 S5 S6 S7
WV[8] WV[9] WV[10] WV[11] WV[12] WV[13] WV[14] WV[15]

EX8 EX9 EX10 EX11 EX12 EX13 EX14 EX15
MA8 MA9 MA10 MA11 MA12 MA13 MA14 MA15

S8 S9 S10 S11 S12 S13 S14 S15

1st. Stage

2nd. Stage

3rd. Stage

4th. Stage

Bit 
Extension
(FP32)

� Proposed BWMS : 
z Compares 16 EXs to find the MAX EX 
z Obtains the differences between MAX EX and each EX
z Shifts All MAs at once by the differences
z Performs MA addition in the MA add unit (MAU)

Shifter

Adder Tree – Bank-Wide MA Shift (BWMS) 

Conv.
Adder 
Tree 1st. 2nd. 3rd. 4th.

BWMS
Adder 
Tree 

Computation Time

1st.2nd.3rd. 4th.

EX Comp.

MA Shft.

MA Add



AiM: Accumulation Operation
n Up to 64 MAC commands between ACT

q 1 MAC every 1ns (tCCDS)
q 64 x 256 bits = 2 KB (row size)
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Vector

2KB

ACT MACAB MACAB MACAB ACT MACAB

CK_c

CK_t

CMD/ADD MACAB MACAB

MAC 0 MAC 2MAC 1 MAC 4 MAC 63MAC 5 …

Min. 1ns

Accumulation Operation

Vector

W0 V0X

2KB

2KB

Weight

(MAC0 ~ MAC63)

(MAC0 ~ MAC63)

MAC 3

Min. 1nsMin. 1nsMin. 1nsMin. 1ns

MACAB

� Accumulation that adds cumulatively the results 
calculated in the multipliers and the adder tree

� MAC CMD can be continuously applied at 1ns 
intervals as many as 64 times
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Vector

2KB

ACT MACAB MACAB MACAB ACT MACAB

CK_c

CK_t

CMD/ADD MACAB MACAB

MAC 0 MAC 2MAC 1 MAC 4 MAC 63MAC 5 …

Min. 1ns

Accumulation Operation

Vector

W0 V0X

2KB

2KB

Weight

(MAC0 ~ MAC63)

(MAC0 ~ MAC63)

MAC 3

Min. 1nsMin. 1nsMin. 1nsMin. 1ns

MACAB

� Accumulation that adds cumulatively the results 
calculated in the multipliers and the adder tree

� MAC CMD can be continuously applied at 1ns 
intervals as many as 64 times

AiM: Accumulation Operation
n Up to 64 MAC commands between ACT

q 1 MAC every 1ns (tCCDS)
q 64 x 256 bits = 2 KB (row size)
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Vector

2KB

ACT MACAB MACAB MACAB PREC ACT MACAB MACAB

Min. 1ns

MAC 0 MAC 63MAC 1 MAC 65MAC 64…

Min. 1ns

Accumulation Operation

Vector

W0 W1

V0

V1

X

2KB2KB
2KB

2KBWeight

(MAC0 ~ MAC63) (MAC64 ~ MAC127)
(MAC64 ~ MAC127)

(MAC0 ~ MAC63)

� Another active command is required for 
accumulation exceeding 64 MAC CMDs

CK_c

CK_t

CMD/ADD
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Vector

2KB

ACT MACAB MACAB MACAB PREC ACT MACAB MACAB

Min. 1ns

MAC 0 MAC 63MAC 1 MAC 65MAC 64…

Min. 1ns

Accumulation Operation

Vector

W0 W1

V0

V1

X

2KB2KB
2KB

2KBWeight

(MAC0 ~ MAC63) (MAC64 ~ MAC127)
(MAC64 ~ MAC127)

(MAC0 ~ MAC63)

� Another active command is required for 
accumulation exceeding 64 MAC CMDs

CK_c

CK_t

CMD/ADD



AiM: Multi-latch Operation
n Save writes with selectable latches
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Operation Sequence without Multi-Latch

Write V0

MAC

W0 x V0

Write V1

MAC

W1 x V1

Write V0

MAC

W2 x V0

Write V1

MAC

W3 x V1

LAT 0 LAT 1 LAT 0 LAT 1

Operation Sequence with Multi-Latch

Write V0 Write V1

MAC

W0 x V0

MAC

W2 x V0

MAC

W1 x V1

MAC

W3 x V1

MAX EXBIAS

MA SUM

LAT 0 LAT 1

LAT_SEL

MAC Result

Accumulation &

Normalization

Circuit

Accumulator with Two Selectable Latches Storing MAC Results 

� AiM supports multi-latch operation that makes it possible to write a vector only twice

Vector

W0 W1

W2 W3

V0

V1

X

2KB2KB

2KB

2KB

Weight

Group 1

Group 2

Multi-Latch Operation

11.1: A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep Learning Applications
© 2022 IEEE 

International Solid-State Circuits Conference 29 of 42

Operation Sequence without Multi-Latch

Write V0

MAC

W0 x V0

Write V1

MAC

W1 x V1

Write V0

MAC

W2 x V0

Write V1

MAC

W3 x V1

LAT 0 LAT 1 LAT 0 LAT 1

Operation Sequence with Multi-Latch

Write V0 Write V1

MAC

W0 x V0

MAC

W2 x V0

MAC

W1 x V1

MAC

W3 x V1

MAX EXBIAS

MA SUM

LAT 0 LAT 1

LAT_SEL

MAC Result

Accumulation &

Normalization

Circuit

Accumulator with Two Selectable Latches Storing MAC Results 

� AiM supports multi-latch operation that makes it possible to write a vector only twice
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� AiM supports multi-latch operation that makes it possible to write a vector only twice
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AiM: Activation Functions (I)
n Two types of activation functions

q Calculation: ReLU, Leaky ReLU
q With LUT: Sigmoid, GELU, Tanh, arbitrary AF
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Activation Functions (AFs)

MAC

Normal 
Word Line

Activation 
Word Line
(Reserved)

MAC OUT

Activation OUT

Weight, Vector

A
DEC

Activation

Interpolation

ReLU /
Leaky ReLU

DEC
k-A

f(A),  f(A+1)

DRAM Cell Supported Activation Functions
w/ Calculation w/ LUT

ReLU, Leaky ReLU, Sigmoid, Tanh, 
GELU, 

and Arbitrary AF 

� Many activation functions (AFs) for various applications
� Two Types of AFs depending on the method of obtaining the result 
z Using calculations
z Using lookup tables (LUTs) 
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Activation Functions w/ LUT

-1

1

-10 10
-1

1

-10 10
-1

1

-10 10

GELUTanhSigmoid

� For sigmoid, tanh, GELU : 
z DRAM cells are used as a lookup 

table (LUT) to output the results
z MAC result is decoded into column 

address, the input of the LUT
� Arbitrary AF can be used by

programming

A

f(A)
0

0

0

0

0

0

: GELU

: Sigmoid

: Tanh

: Arbitrary AFColumn 
Address
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𝒇𝒇(𝒌𝒌) ≒ 𝒇𝒇(𝑨𝑨) +
𝒌𝒌 − 𝑨𝑨

𝑨𝑨+ 𝟏𝟏 − 𝑨𝑨
Χ (𝒇𝒇 𝑨𝑨+ 𝟏𝟏) − 𝒇𝒇(𝑨𝑨 )

𝑨𝑨

𝒇𝒇(𝑨𝑨)

𝒇𝒇(𝑨𝑨 + 𝟏𝟏)

𝒌𝒌

𝒇𝒇 𝒌𝒌 = ?

𝑨𝑨+ 𝟏𝟏

𝒇𝒇(𝒙𝒙)

𝒙𝒙

...

512 Steps

...0 1 2 3 511

-1

1

-10 10

Sigmoid

510A A+1

𝒌𝒌

Activation Functions w/ LUT

� linear interpolation :
z For any k that does not belong to 512 steps, f(k) is obtained using A adjacent to k
z f(A) and f(A+1) are output from the LUT, values are linearly interpolated 
z Allows more accurate function values to be output in a limited number of inputs

the number of inputs in the LUT is limited to 512 

belongs to 
512 steps 

MAC
result

AiM: Activation Functions (II)
n LUT (512 values) + Linear interpolation

q Mode set register (MSR) to select AF

37Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for 
Deep-Learning Applications, ISSCC 2022
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Commands for Activation Functions

� Mode register set (MRS) command 
to select activation function 

� ACTAF command to activate the 
activation word line

� AF command to perform the 
activation operation

CK_c

CK_t

CA ACT PREC AFMACAB PRECACTAFMRS

MAC Activation

Select
Activation
Function



AiM: Key Feature Summary
n Comparison table
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Accelerator-in-memory (AiM) Introduction

PERI

BK BK BK BK

PU PU PU PU

BK BK BK BK
PU PU PU PU

BK BK BK BK

PU PU PU PU

BK BK BK BK
PU PU PU PU

� Accelerator-in-memory (AiM), a GDDR6-based PIM, is implemented
z Designed to accelerate deep-learning (DL) applications
z Offers 1TFLOPs peak throughput and various activation functions

[1] [2] [3] This work
DRAM Type LPDDR4 DDR4 HBM2 GDDR6

Process 20nm 2x nm 20 nm 1y nm

Memory Density 8GB/chip
(8H 8Gb mono die) 8GB/DIMM

6GB/cube
(Buffer die + 

4H 4Gb core-die with + 
4H 8Gb core-die)

8Gb/chip
(4Gb DDP)

Data Rate 3.2Gbps 2.4Gbps 2.4Gbps 16Gbps

Bandwidth 25.6GB/s per chip 19.2GB/s per DIMM 307GB/s per cube 64GB/s per chip

# of Processing Unit (PU) 2048 per chip
(256 per die)

128 per DIMM
(8 per chip)

128 per cube
(32 per core-die)

32 per chip
(16 per die)

Processing Operation 
Speed 250MHz 500MHz 300MHz 1GHz 

1 PU 
Throughput

2 GOPS 
(250MHz x 8byte)

4 GOPS
(500MHz x 8byte)

9.6 GFLOPS
(300MHz x 32byte)

32 GFLOPS
(1GHz x 32byte)

Total
Throughput

(1 PU Throughput x  # of PU)

0.5 TOPS per chip 
(2 GOPS x 256)

0.5 TOPS per DIMM
(4 GOPS x 128)

1.2 TFLOPS per cube
(9.6 GFLOPS x 128)

1 TFLOPS per chip
(32 GFLOPS x 32)

Operation precision INT8 INT8 FP16 BF16

Supported 
Activation Functions - - ReLU Sigmoid, Tanh, GELU, ReLU, 

Leaky ReLU and Arbitrary AF [1] H. Shin, et al., IEEE TCADICS 2018, 
[2] F. Devaux, IEEE Hot Chips Symp. 2019, 
[3] Y.-C. Kwon et al., ISSCC 2021

AIM, based on GDDR6, 
exploiting bank parallelism

UPMEM PIM [2] FIMDRAM [3, 7]



Upcoming Lectures
n More real-world PIM architectures

n Programming PIM systems

n More on workload characterization for PIM suitability

n PUM architectures and prototypes
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