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n Processing in DRAM Engine 
n Includes standard DIMM modules, with a large 

number of DPU processors combined with DRAM chips.

n Replaces standard DIMMs
q DDR4 R-DIMM modules

n 8GB+128 DPUs (16 PIM chips)
n Standard 2x-nm DRAM process

q Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

CPU
(x86, ARM, RV…)

DDR
Data bus

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/
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System Organization
• A UPMEM DIMM contains 8 or 16 chips

- Thus, 1 or 2 ranks of 8 chips each

• Inside each PIM chip there are:
- 8 64MB banks per chip: Main RAM (MRAM) banks
- 8 DRAM Processing Units (DPUs) in each chip, 64 DPUs per 
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DRAM Processing Unit
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DPU Pipeline
• In-order pipeline

- Up to 425 MHz *

• Fine-grain multithreaded
- 24 hardware threads

• 14 pipeline stages
- DISPATCH: Thread selection
- FETCH: Instruction fetch
- READOP: Register file
- FORMAT: Operand formatting
- ALU: Operation and WRAM
- MERGE: Result formatting
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* 350 MHz in the UPMEM-based PIM system used for the experimental results shown in this lecture



6

DPU Instruction Set Architecture
• Specific 32-bit ISA

- Aiming at scalar, in-
order, and 
multithreaded 
implementation

- Allowing compilation 
of 64-bit C code

- LLVM/Clang compiler

https://sdk.upmem.com/2021.2.0/201_IS.html#
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UPMEM PIM Architecture: Lectures 2 & 3

https://youtu.be/6dwV_RBjK2c
https://youtu.be/myG-H_8oN8A

https://youtu.be/6dwV_RBjK2c
https://youtu.be/myG-H_8oN8A
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Accelerator Model (I)
• UPMEM DIMMs coexist with conventional DIMMs

• Integration of UPMEM DIMMs in a system follows an 
accelerator model

• UPMEM DIMMs can be seen as a loosely coupled 
accelerator
- Explicit data movement between the main processor (host 

CPU) and the accelerator (UPMEM)
- Explicit kernel launch onto the UPMEM processors

• This resembles GPU computing
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Accelerator Model (II)
• FIG. 6 is a flow diagram representing operations in a method of delegating a 

processing task to a DRAM processor according to an example embodiment

Fabrice Devaux, Jean-François Roy. “Memory circuit with integrated processor.” US 10,324,870 B2.
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Vector Addition (VA)
• Our first programming example
• We partition the input arrays across:

- DPUs
- Tasklets, i.e., software threads running on a DPU

A[0] A[1] A[N-1]

B[0] B[1] B[N-1]

C[0] C[1] C[N-1]

DPU 0 DPU 1 DPU 2 DPU 3

Tasklet
0

Tasklet
1

Tasklet
0

Tasklet
1

Tasklet
0

Tasklet
1

Tasklet
0

Tasklet
1
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UPMEM SDK Documentation

https://sdk.upmem.com/2021.3.0/

https://sdk.upmem.com/2021.3.0/
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General Programming Recommendations

• From UPMEM programming guide✻, presentations★, 
and white papers☆

✻ https://sdk.upmem.com/2021.1.1/index.html
★ F. Devaux, "The true Processing In Memory accelerator," HotChips 2019. doi: 10.1109/HOTCHIPS.2019.8875680
☆UPMEM, “Introduction to UPMEM PIM. Processing-in-memory (PIM) on DRAM Accelerator,” White paper

GENERAL	PROGRAMMING	RECOMMENDATIONS
1. Execute	on	the	DRAM	Processing	Units (DPUs)	

portions	of	parallel	code that	are	as	long	as	
possible.	

2. Split	the	workload	into	independent	data	
blocks,	which	the	DPUs	operate	on	
independently.	

3. Use	as	many	working	DPUs	in	the	system	as	
possible.

4. Launch	at	least	11	tasklets (i.e.,	software	
threads) per	DPU.	

https://sdk.upmem.com/2021.1.1/index.html
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DPU Allocation
• dpu_alloc() allocates a number of DPUs

- Creates a dpu_set

Can we allocate different DPU sets 
over the course of a program?

Yes, we can. We show an example next

We deallocate a DPU set with dpu_free()
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DPU Allocation: Needleman-Wunsch (NW)

• In NW we change the number of DPUs in the DPU set as 
computation progresses
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Load DPU Binary
• dpu_load() loads a program in all DPUs of a 
dpu_set

Is it possible to launch different kernels onto different DPUs?

Yes, it is possible. This enables:
• Workloads with task-level parallelism
• Different programs using different DPU sets
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CPU-DPU/DPU-CPU Data Transfers
• CPU-DPU and DPU-CPU transfers

- Between host CPU’s main memory and DPUs’ MRAM banks

• Serial CPU-DPU/DPU-CPU transfers: 
- A single DPU (i.e., 1 MRAM bank)

• Parallel CPU-DPU/DPU-CPU transfers: 
- Multiple DPUs (i.e., many MRAM banks)

• Broadcast CPU-DPU transfers: 
- Multiple DPUs with a single buffer
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Serial Transfers
• dpu_copy_to(); 
• dpu_copy_from();
• We transfer (part of) a buffer to/from each DPU in the 
dpu_set
• DPU_MRAM_HEAP_POINTER_NAME: Start of the 

MRAM range that can be freely accessed by applications
- We do not allocate MRAM explicitly

Offset within MRAM Pointer to main memory Transfer size
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Parallel Transfers
• We push different buffers to/from a DPU set in one 

transfer
- All buffers need to be of the same size

• First, prepare (dpu_prepare_xfer); 
then, push (dpu_push_xfer)
• Direction:

- DPU_XFER_TO_DPU
- DPU_XFER_FROM_DPU

Pointer to main memory

Offset within MRAM Transfer size

Direction
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Broadcast Transfers
• dpu_broadcast_to(); 

- Only CPU to DPU

• We transfer the same buffer to all DPUs in the dpu_set

Pointer to main memory Transfer size
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Different Types of Transfers in a Program

• An example benchmark that uses both parallel and serial 
transfers
• Select (SEL)

- Remove even values

DPU 0 DPU 1 DPU 2

DPU 0 DPU 1 DPU 2

Parallel 
transfers

Serial 
transfers
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Inter-DPU Communication
• There is no direct communication channel between DPUs

• Inter-DPU communication takes place via the host CPU using CPU-DPU 
and DPU-CPU transfers

• Example communication patterns:
- Merging of partial results to obtain the final result

• Only DPU-CPU transfers
- Redistribution of intermediate results for further computation

• DPU-CPU transfers and CPU-DPU transfers
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How Fast are these Data Transfers? 
• With a microbenchmark, we obtain the sustained 

bandwidth of all types of CPU-DPU and DPU-CPU transfers
• Two experiments:

- 1 DPU: variable CPU-DPU and DPU-CPU transfer size (8 bytes to 
32 MB) 

- 1 rank: 32 MB CPU-DPU and DPU-CPU transfers to/from a set of    
1 to 64 MRAM banks within the same rank

• Preliminary experiments with more than one rank
- Channel-level parallelism

DDR4 bandwidth bounds the maximum transfer bandwidth

The cost of the transfers can be amortized, 
if enough computation is run on the DPUs
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CPU-DPU/DPU-CPU Transfers: 1 DPU
• Data transfer size varies between 8 bytes and 32 MB
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KEY	OBSERVATION	7
Larger	CPU-DPU	and	DPU-CPU	transfers	between	the	host	main	
memory	and	the	DRAM	Processing	Unit’s	Main	memory	(MRAM)	
banks	result	in	higher	sustained	bandwidth.	
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CPU-DPU/DPU-CPU Transfers: 1 Rank (I)
• CPU-DPU (serial/parallel/broadcast) and DPU-CPU (serial/parallel)
• The number of DPUs varies between 1 and 64
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KEY	OBSERVATION	8
The	sustained	bandwidth	of	parallel	CPU-DPU	and	DPU-CPU	
transfers between	the	host	main	memory	and	the	DRAM	Processing	
Unit’s	Main	memory	(MRAM)	banks	increases	with	the	number	of	
DRAM	Processing	Units	inside	a	rank.
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CPU-DPU/DPU-CPU Transfers: 1 Rank (II)
• CPU-DPU (serial/parallel/broadcast) and DPU-CPU (serial/parallel)
• The number of DPUs varies between 1 and 64
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KEY	OBSERVATION	9
The	sustained	bandwidth	of	
parallel	CPU-DPU	transfers	is	
higher	than	the	sustained	
bandwidth	of	parallel	DPU-CPU	
transfers	due	to	different	
implementations of	CPU-DPU	and	
DPU-CPU	transfers	in	the	UPMEM	
runtime	library.	

The	sustained	bandwidth	of	broadcast	CPU-DPU	transfers	(i.e.,	the	same	
buffer	is	copied	to	multiple	MRAM	banks)	is	higher	than	that	of	parallel	
CPU-DPU	transfers (i.e.,	different	buffers	are	copied	to	different	MRAM	
banks)	due	to	higher	temporal	locality	in	the	CPU	cache	hierarchy.	
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“Transposing” Library

F. Devaux, "The true Processing In Memory accelerator," HotChips 2019. doi: 10.1109/HOTCHIPS.2019.8875680
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Microbenchmark: CPU-DPU
• CPU-DPU (serial/parallel/broadcast) and DPU-CPU (serial/parallel)
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DPU Kernel Launch
• dpu_launch() launches a kernel on a dpu_set

- DPU_SYNCHRONOUS suspends the application until the 
kernel finishes

- DPU_ASYNCHRONOUS returns the control to the application
• dpu_sync or dpu_status to check kernel completion

What does the asynchronous execution enable?

Some ideas:
• Task-level parallelism: concurrent execution of different kernels on 

different DPU sets
• Concurrent heterogeneous computation on CPU and DPUs
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How to Pass Parameters to the Kernel?
• We can use serial and parallel transfers
• We pass them directly to the scratchpad memory of the 

DPU 
- Working RAM (WRAM): We introduce it in the next slides

• This is useful for input parameters and some results
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Recall: Vector Addition (VA)
• Our first programming example
• We partition the input arrays across:

- DPUs
- Tasklets, i.e., software threads running on a DPU

A[0] A[1] A[N-1]

B[0] B[1] B[N-1]

C[0] C[1] C[N-1]

DPU 0 DPU 1 DPU 2 DPU 3

Tasklet
0

Tasklet
1

Tasklet
0

Tasklet
1

Tasklet
0

Tasklet
1

Tasklet
0

Tasklet
1
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• Vector addition

Programming a DPU Kernel (I)

Tasklet ID
Size of vector tile processed by a DPU

MRAM addresses of arrays A and B

WRAM allocation

MRAM-WRAM DMA 
transfers

Vector addition (see next slide)

WRAM-MRAM DMA transfer
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Programming a DPU Kernel (II)
• Vector addition
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Programming a DPU Kernel (III)
• A tasklet is the software abstraction of a hardware 

thread
• Each tasklet can have its own memory space in WRAM

- Tasklets can also share data in WRAM by sharing pointers

• Tasklets within the same DPU can synchronize
- Mutual exclusion

• mutex_lock(); mutex_unlock();
- Handshakes

• handshake_wait_for(); handshake_notify();
- Barriers

• barrier_wait();
- Semaphores

• sem_give(); sem_take();
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Parallel Reduction (I)
• Tasklets in a DPU can work together on a parallel 

reduction

A[0] A[1] A[N-1]

Sum

Tasklet 0 Tasklet 1 Tasklet 2 Tasklet 3
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A[0] A[1] A[N-1]

Local 
Sum

Local 
Sum

Local 
Sum

Local 
Sum

Sum

Parallel Reduction (II)
• Each tasklet computes a local sum

Tasklet 0 Tasklet 1 Tasklet 2 Tasklet 3
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Parallel Reduction (III)
• Each tasklet computes a local sum

Accumulate in a local sum

Copy local sum into WRAM
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Final Reduction
• A single tasklet can perform the final reduction

Accumulate in a local sum

Copy local sum into WRAM

Sequential accumulation

Barrier synchronization



Vector Reduction: Naïve Mapping
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38Slide credit: Hwu & Kirk

…
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Using Barriers: Tree-Based Reduction
• Multiple tasklets can perform a tree-based reduction

- After every iteration tasklets synchronize with a barrier
- Half of the tasklets retire at the end of an iteration

“offset” tasklets working

Barrier synchronization

A handshake-based tree-based reduction is also possible.
We can compare single-tasklet, barrier-based, 

and handshake-based versions*

*Gómez-Luna et al., “Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture,” 
https://arxiv.org/pdf/2105.03814.pdf

https://arxiv.org/pdf/2105.03814.pdf
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Parallel Reduction on GPU

https://youtu.be/Xp0HHpcDwUc

https://youtu.be/Xp0HHpcDwUc
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UPMEM SDK Documentation

https://sdk.upmem.com/2021.3.0/

https://sdk.upmem.com/2021.3.0/
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PrIM Benchmarks
• Goal

- A common set of workloads that can be used to 
• evaluate the UPMEM PIM architecture,
• compare software improvements and compilers,
• compare future PIM architectures and hardware

• Two key selection criteria:
- Selected workloads from different application domains
- Memory-bound workloads on processor-centric architectures

• 14 different workloads, 16 different benchmarks*

*There are two versions for two of the workloads (HST, SCAN).



43

PrIM Benchmarks: Application Domains
Domain Benchmark Short name

Dense linear algebra
Vector Addition VA

Matrix-Vector Multiply GEMV

Sparse linear algebra Sparse Matrix-Vector Multiply SpMV

Databases
Select SEL

Unique UNI

Data analytics
Binary Search BS

Time Series Analysis TS

Graph processing Breadth-First Search BFS

Neural networks Multilayer Perceptron MLP

Bioinformatics Needleman-Wunsch NW

Image processing
Image histogram (short) HST-S

Image histogram (large) HST-L

Parallel primitives

Reduction RED

Prefix sum (scan-scan-add) SCAN-SSA

Prefix sum (reduce-scan-scan) SCAN-RSS

Matrix transposition TRNS
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PrIM Benchmarks: Diversity
• PrIM benchmarks are diverse:

- Memory access patterns
- Operations and datatypes
- Communication/synchronization
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PrIM Benchmarks: Inter-DPU Communication
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• Inter-DPU communication
- Result merging:

• SEL, UNI, HST-S, HST-L, RED
• Only DPU-CPU transfers

- Redistribution of intermediate results:
• BFS, MLP, NW, SCAN-SSA, SCAN-RSS
• DPU-CPU and CPU-DPU transfers

PrIM Benchmarks: Inter-DPU Communication
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PrIM Benchmarks
• 16 benchmarks and scripts 

for evaluation
• https://github.com/CMU-

SAFARI/prim-benchmarks

https://github.com/CMU-SAFARI/prim-benchmarks


Upcoming Lectures
n More real-world PIM architectures

n More on workload characterization for PIM suitability

q Benchmarking and workload suitability on the UPMEM PIM 
architecture

n PUM architectures and prototypes
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