
Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zürich
Spring 2022
21 April 2022

P&S Processing-in-Memory
Programming

Processing-in-Memory Architectures

UPMEM Processing-in-DRAM Engine (2019)

2

n Processing in DRAM Engine
n Includes standard DIMM modules, with a large

number of DPU processors combined with DRAM chips.

n Replaces standard DIMMs
q DDR4 R-DIMM modules

n 8GB+128 DPUs (16 PIM chips)
n Standard 2x-nm DRAM process

q Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

CPU
(x86, ARM, RV…)

DDR
Data bus

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

3

Host
CPU

xN

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

xM

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

PIM Chip

x8

Control/Status Interface DDR4 Interface

System Organization
• A UPMEM DIMM contains 8 or 16 chips

- Thus, 1 or 2 ranks of 8 chips each

• Inside each PIM chip there are:
- 8 64MB banks per chip: Main RAM (MRAM) banks
- 8 DRAM Processing Units (DPUs) in each chip, 64 DPUs per

rank

24-KB
IRAM

D
M

A
 E

n
g

in
e

64-KB
WRAM

DISPATCH
FETCH1
FETCH2
FETCH3

READOP1
READOP2
READOP3
FORMAT

ALU1
ALU2
ALU3
ALU4

MERGE1
MERGE2

Re
gi

st
er

 F
ile

P
ip

el
in

e
64-MB
DRAM
Bank

(MRAM)

64 bits

4

DRAM Processing Unit

Host
CPU

xN

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM Chip

24-KB
IRAM

D
M

A
 E

n
g

in
e

64-MB
DRAM
Bank

(MRAM)64-KB
WRAM

x8

Control/Status Interface DDR4 Interface

DISPATCH
FETCH1
FETCH2
FETCH3

READOP1
READOP2
READOP3
FORMAT

ALU1
ALU2
ALU3
ALU4

MERGE1
MERGE2

Re
gi

st
er

 F
ile

P
ip

el
in

e

64 bits

xM

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

PIM Chip

24-KB
IRAM

D
M

A
 E

n
g

in
e

64-MB
DRAM
Bank

(MRAM)64-KB
WRAM

x8

Control/Status Interface DDR4 Interface

DISPATCH
FETCH1
FETCH2
FETCH3

READOP1
READOP2
READOP3
FORMAT

ALU1
ALU2
ALU3
ALU4

MERGE1
MERGE2

Re
gi

st
er

 F
ile

P
ip

el
in

e

64 bits

5

DPU Pipeline
• In-order pipeline

- Up to 425 MHz *

• Fine-grain multithreaded
- 24 hardware threads

• 14 pipeline stages
- DISPATCH: Thread selection
- FETCH: Instruction fetch
- READOP: Register file
- FORMAT: Operand formatting
- ALU: Operation and WRAM
- MERGE: Result formatting

PIM Chip

24-KB
IRAM

D
M

A
 E

n
g

in
e

64-MB
DRAM
Bank

(MRAM)64-KB
WRAM

x8

Control/Status Interface DDR4 Interface

DISPATCH
FETCH1
FETCH2
FETCH3

READOP1
READOP2
READOP3
FORMAT

ALU1
ALU2
ALU3
ALU4

MERGE1
MERGE2

Re
gi

st
er

 F
ile

P
ip

el
in

e

64 bitsTo the DMA engine

* 350 MHz in the UPMEM-based PIM system used for the experimental results shown in this lecture

6

DPU Instruction Set Architecture
• Specific 32-bit ISA

- Aiming at scalar, in-
order, and
multithreaded
implementation

- Allowing compilation
of 64-bit C code

- LLVM/Clang compiler

https://sdk.upmem.com/2021.2.0/201_IS.html#

7

UPMEM PIM Architecture: Lectures 2 & 3

https://youtu.be/6dwV_RBjK2c
https://youtu.be/myG-H_8oN8A

https://youtu.be/6dwV_RBjK2c
https://youtu.be/myG-H_8oN8A

8

Accelerator Model (I)
• UPMEM DIMMs coexist with conventional DIMMs

• Integration of UPMEM DIMMs in a system follows an
accelerator model

• UPMEM DIMMs can be seen as a loosely coupled
accelerator
- Explicit data movement between the main processor (host

CPU) and the accelerator (UPMEM)
- Explicit kernel launch onto the UPMEM processors

• This resembles GPU computing

9

Accelerator Model (II)
• FIG. 6 is a flow diagram representing operations in a method of delegating a

processing task to a DRAM processor according to an example embodiment

Fabrice Devaux, Jean-François Roy. “Memory circuit with integrated processor.” US 10,324,870 B2.

10

Vector Addition (VA)
• Our first programming example
• We partition the input arrays across:

- DPUs
- Tasklets, i.e., software threads running on a DPU

A[0] A[1] A[N-1]

B[0] B[1] B[N-1]

C[0] C[1] C[N-1]

DPU 0 DPU 1 DPU 2 DPU 3

Tasklet
0

Tasklet
1

Tasklet
0

Tasklet
1

Tasklet
0

Tasklet
1

Tasklet
0

Tasklet
1

11

UPMEM SDK Documentation

https://sdk.upmem.com/2021.3.0/

https://sdk.upmem.com/2021.3.0/

12

General Programming Recommendations

• From UPMEM programming guide✻, presentations★,
and white papers☆

✻ https://sdk.upmem.com/2021.1.1/index.html
★ F. Devaux, "The true Processing In Memory accelerator," HotChips 2019. doi: 10.1109/HOTCHIPS.2019.8875680
☆UPMEM, “Introduction to UPMEM PIM. Processing-in-memory (PIM) on DRAM Accelerator,” White paper

GENERAL	PROGRAMMING	RECOMMENDATIONS
1. Execute	on	the	DRAM	Processing	Units (DPUs)	

portions	of	parallel	code that	are	as	long	as	
possible.	

2. Split	the	workload	into	independent	data	
blocks,	which	the	DPUs	operate	on	
independently.	

3. Use	as	many	working	DPUs	in	the	system	as	
possible.

4. Launch	at	least	11	tasklets (i.e.,	software	
threads) per	DPU.	

https://sdk.upmem.com/2021.1.1/index.html

13

DPU Allocation
• dpu_alloc() allocates a number of DPUs

- Creates a dpu_set

Can we allocate different DPU sets
over the course of a program?

Yes, we can. We show an example next

We deallocate a DPU set with dpu_free()

14

DPU Allocation: Needleman-Wunsch (NW)

• In NW we change the number of DPUs in the DPU set as
computation progresses

15

Load DPU Binary
• dpu_load() loads a program in all DPUs of a
dpu_set

Is it possible to launch different kernels onto different DPUs?

Yes, it is possible. This enables:
• Workloads with task-level parallelism
• Different programs using different DPU sets

16

CPU-DPU/DPU-CPU Data Transfers
• CPU-DPU and DPU-CPU transfers

- Between host CPU’s main memory and DPUs’ MRAM banks

• Serial CPU-DPU/DPU-CPU transfers:
- A single DPU (i.e., 1 MRAM bank)

• Parallel CPU-DPU/DPU-CPU transfers:
- Multiple DPUs (i.e., many MRAM banks)

• Broadcast CPU-DPU transfers:
- Multiple DPUs with a single buffer

Host
CPU

xN

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

xM

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

CP
U-D

PU

DPU-CPU

17

Serial Transfers
• dpu_copy_to();
• dpu_copy_from();
• We transfer (part of) a buffer to/from each DPU in the
dpu_set
• DPU_MRAM_HEAP_POINTER_NAME: Start of the

MRAM range that can be freely accessed by applications
- We do not allocate MRAM explicitly

Offset within MRAM Pointer to main memory Transfer size

18

Parallel Transfers
• We push different buffers to/from a DPU set in one

transfer
- All buffers need to be of the same size

• First, prepare (dpu_prepare_xfer);
then, push (dpu_push_xfer)
• Direction:

- DPU_XFER_TO_DPU
- DPU_XFER_FROM_DPU

Pointer to main memory

Offset within MRAM Transfer size

Direction

19

Broadcast Transfers
• dpu_broadcast_to();

- Only CPU to DPU

• We transfer the same buffer to all DPUs in the dpu_set

Pointer to main memory Transfer size

20

Different Types of Transfers in a Program

• An example benchmark that uses both parallel and serial
transfers
• Select (SEL)

- Remove even values

DPU 0 DPU 1 DPU 2

DPU 0 DPU 1 DPU 2

Parallel
transfers

Serial
transfers

21

Inter-DPU Communication
• There is no direct communication channel between DPUs

• Inter-DPU communication takes place via the host CPU using CPU-DPU
and DPU-CPU transfers

• Example communication patterns:
- Merging of partial results to obtain the final result

• Only DPU-CPU transfers
- Redistribution of intermediate results for further computation

• DPU-CPU transfers and CPU-DPU transfers

Host
CPU

xN

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

xM

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

CP
U-D

PU

DPU-CPU

22

How Fast are these Data Transfers?
• With a microbenchmark, we obtain the sustained

bandwidth of all types of CPU-DPU and DPU-CPU transfers
• Two experiments:

- 1 DPU: variable CPU-DPU and DPU-CPU transfer size (8 bytes to
32 MB)

- 1 rank: 32 MB CPU-DPU and DPU-CPU transfers to/from a set of
1 to 64 MRAM banks within the same rank

• Preliminary experiments with more than one rank
- Channel-level parallelism

DDR4 bandwidth bounds the maximum transfer bandwidth

The cost of the transfers can be amortized,
if enough computation is run on the DPUs

23

CPU-DPU/DPU-CPU Transfers: 1 DPU
• Data transfer size varies between 8 bytes and 32 MB

0.0001

0.0010

0.0100

0.1000

1.0000

8 32 12
8

51
2 2K 8K 32
K

12
8K

51
2K 2M 8M 32
M

Su
st

ai
ne

d
CP

U
-D

PU

Ba
nd

w
id

th
(G

B/
s,

 lo
g

sc
al

e)

Data transfer size (bytes)

CPU-DPU

DPU-CPU

KEY	OBSERVATION	7
Larger	CPU-DPU	and	DPU-CPU	transfers	between	the	host	main	
memory	and	the	DRAM	Processing	Unit’s	Main	memory	(MRAM)	
banks	result	in	higher	sustained	bandwidth.	

24

CPU-DPU/DPU-CPU Transfers: 1 Rank (I)
• CPU-DPU (serial/parallel/broadcast) and DPU-CPU (serial/parallel)
• The number of DPUs varies between 1 and 64

0.27

0.12

6.68

4.74

16.88

0.06
0.13
0.25
0.50
1.00
2.00
4.00
8.00
16.00

1 2 4 8 16 32 64

Su
st

ai
ne

d
CP

U
-D

PU

Ba
nd

w
id

th
(G

B/
s,

 lo
g

sc
al

e)

#DPUs

CPU-DPU (serial) DPU-CPU (serial)
CPU-DPU (parallel) DPU-CPU (parallel)
CPU-DPU (broadcast)

KEY	OBSERVATION	8
The	sustained	bandwidth	of	parallel	CPU-DPU	and	DPU-CPU	
transfers between	the	host	main	memory	and	the	DRAM	Processing	
Unit’s	Main	memory	(MRAM)	banks	increases	with	the	number	of	
DRAM	Processing	Units	inside	a	rank.

25

CPU-DPU/DPU-CPU Transfers: 1 Rank (II)
• CPU-DPU (serial/parallel/broadcast) and DPU-CPU (serial/parallel)
• The number of DPUs varies between 1 and 64

0.27

0.12

6.68

4.74

16.88

0.06
0.13
0.25
0.50
1.00
2.00
4.00
8.00
16.00

1 2 4 8 16 32 64

Su
st

ai
ne

d
CP

U
-D

PU

Ba
nd

w
id

th
(G

B/
s,

 lo
g

sc
al

e)

#DPUs

CPU-DPU (serial) DPU-CPU (serial)
CPU-DPU (parallel) DPU-CPU (parallel)
CPU-DPU (broadcast)

KEY	OBSERVATION	9
The	sustained	bandwidth	of	
parallel	CPU-DPU	transfers	is	
higher	than	the	sustained	
bandwidth	of	parallel	DPU-CPU	
transfers	due	to	different	
implementations of	CPU-DPU	and	
DPU-CPU	transfers	in	the	UPMEM	
runtime	library.	

The	sustained	bandwidth	of	broadcast	CPU-DPU	transfers	(i.e.,	the	same	
buffer	is	copied	to	multiple	MRAM	banks)	is	higher	than	that	of	parallel	
CPU-DPU	transfers (i.e.,	different	buffers	are	copied	to	different	MRAM	
banks)	due	to	higher	temporal	locality	in	the	CPU	cache	hierarchy.	

26

“Transposing” Library

F. Devaux, "The true Processing In Memory accelerator," HotChips 2019. doi: 10.1109/HOTCHIPS.2019.8875680

27

Microbenchmark: CPU-DPU
• CPU-DPU (serial/parallel/broadcast) and DPU-CPU (serial/parallel)

28

DPU Kernel Launch
• dpu_launch() launches a kernel on a dpu_set

- DPU_SYNCHRONOUS suspends the application until the
kernel finishes

- DPU_ASYNCHRONOUS returns the control to the application
• dpu_sync or dpu_status to check kernel completion

What does the asynchronous execution enable?

Some ideas:
• Task-level parallelism: concurrent execution of different kernels on

different DPU sets
• Concurrent heterogeneous computation on CPU and DPUs

29

How to Pass Parameters to the Kernel?
• We can use serial and parallel transfers
• We pass them directly to the scratchpad memory of the

DPU
- Working RAM (WRAM): We introduce it in the next slides

• This is useful for input parameters and some results

30

Recall: Vector Addition (VA)
• Our first programming example
• We partition the input arrays across:

- DPUs
- Tasklets, i.e., software threads running on a DPU

A[0] A[1] A[N-1]

B[0] B[1] B[N-1]

C[0] C[1] C[N-1]

DPU 0 DPU 1 DPU 2 DPU 3

Tasklet
0

Tasklet
1

Tasklet
0

Tasklet
1

Tasklet
0

Tasklet
1

Tasklet
0

Tasklet
1

31

• Vector addition

Programming a DPU Kernel (I)

Tasklet ID
Size of vector tile processed by a DPU

MRAM addresses of arrays A and B

WRAM allocation

MRAM-WRAM DMA
transfers

Vector addition (see next slide)

WRAM-MRAM DMA transfer

32

Programming a DPU Kernel (II)
• Vector addition

33

Programming a DPU Kernel (III)
• A tasklet is the software abstraction of a hardware

thread
• Each tasklet can have its own memory space in WRAM

- Tasklets can also share data in WRAM by sharing pointers

• Tasklets within the same DPU can synchronize
- Mutual exclusion

• mutex_lock(); mutex_unlock();
- Handshakes

• handshake_wait_for(); handshake_notify();
- Barriers

• barrier_wait();
- Semaphores

• sem_give(); sem_take();

34

Parallel Reduction (I)
• Tasklets in a DPU can work together on a parallel

reduction

A[0] A[1] A[N-1]

Sum

Tasklet 0 Tasklet 1 Tasklet 2 Tasklet 3

35

A[0] A[1] A[N-1]

Local
Sum

Local
Sum

Local
Sum

Local
Sum

Sum

Parallel Reduction (II)
• Each tasklet computes a local sum

Tasklet 0 Tasklet 1 Tasklet 2 Tasklet 3

36

Parallel Reduction (III)
• Each tasklet computes a local sum

Accumulate in a local sum

Copy local sum into WRAM

37

Final Reduction
• A single tasklet can perform the final reduction

Accumulate in a local sum

Copy local sum into WRAM

Sequential accumulation

Barrier synchronization

Vector Reduction: Naïve Mapping

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3it
er
at
io
ns

Thread 0 Thread 8Thread 2 Thread 4 Thread 6 Thread 10

38Slide credit: Hwu & Kirk

…

39

Using Barriers: Tree-Based Reduction
• Multiple tasklets can perform a tree-based reduction

- After every iteration tasklets synchronize with a barrier
- Half of the tasklets retire at the end of an iteration

“offset” tasklets working

Barrier synchronization

A handshake-based tree-based reduction is also possible.
We can compare single-tasklet, barrier-based,

and handshake-based versions*

*Gómez-Luna et al., “Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture,”
https://arxiv.org/pdf/2105.03814.pdf

https://arxiv.org/pdf/2105.03814.pdf

40

Parallel Reduction on GPU

https://youtu.be/Xp0HHpcDwUc

https://youtu.be/Xp0HHpcDwUc

41

UPMEM SDK Documentation

https://sdk.upmem.com/2021.3.0/

https://sdk.upmem.com/2021.3.0/

42

PrIM Benchmarks
• Goal

- A common set of workloads that can be used to
• evaluate the UPMEM PIM architecture,
• compare software improvements and compilers,
• compare future PIM architectures and hardware

• Two key selection criteria:
- Selected workloads from different application domains
- Memory-bound workloads on processor-centric architectures

• 14 different workloads, 16 different benchmarks*

*There are two versions for two of the workloads (HST, SCAN).

43

PrIM Benchmarks: Application Domains
Domain Benchmark Short name

Dense linear algebra
Vector Addition VA

Matrix-Vector Multiply GEMV

Sparse linear algebra Sparse Matrix-Vector Multiply SpMV

Databases
Select SEL

Unique UNI

Data analytics
Binary Search BS

Time Series Analysis TS

Graph processing Breadth-First Search BFS

Neural networks Multilayer Perceptron MLP

Bioinformatics Needleman-Wunsch NW

Image processing
Image histogram (short) HST-S

Image histogram (large) HST-L

Parallel primitives

Reduction RED

Prefix sum (scan-scan-add) SCAN-SSA

Prefix sum (reduce-scan-scan) SCAN-RSS

Matrix transposition TRNS

44

BFS

BS

GEMV
MLP

SEL
SpMV

TS UNI

VA

HST

RED
SCAN

NW
TRNS

0.125

0.25

0.5

1

2

4

8

16

0.01 0.1 1 10

Pe
rf

or
m

an
ce

 (G
O

PS
)

Arithmetic Intensity (OP/B)

Peak compute performance

Roofline Model
• Intel Advisor on an Intel Xeon E3-1225 v6 CPU

DRAM

L3

All workloads fall in the memory-bound area of the Roofline

45

PrIM Benchmarks: Diversity
• PrIM benchmarks are diverse:

- Memory access patterns
- Operations and datatypes
- Communication/synchronization

46

PrIM Benchmarks: Inter-DPU Communication

47

• Inter-DPU communication
- Result merging:

• SEL, UNI, HST-S, HST-L, RED
• Only DPU-CPU transfers

- Redistribution of intermediate results:
• BFS, MLP, NW, SCAN-SSA, SCAN-RSS
• DPU-CPU and CPU-DPU transfers

PrIM Benchmarks: Inter-DPU Communication

48

PrIM Benchmarks
• 16 benchmarks and scripts

for evaluation
• https://github.com/CMU-

SAFARI/prim-benchmarks

https://github.com/CMU-SAFARI/prim-benchmarks

Upcoming Lectures
n More real-world PIM architectures

n More on workload characterization for PIM suitability

q Benchmarking and workload suitability on the UPMEM PIM
architecture

n PUM architectures and prototypes

49

Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zürich
Spring 2022
21 April 2022

P&S Processing-in-Memory
Programming

Processing-in-Memory Architectures

