
P&S HW/SW Co-design
Lecture 3: Virtual Memory (II)

Konstantinos Kanellopoulos
Prof. Onur Mutlu

ETH Zurich
Spring 2022
13 April 2022

Memory (Programmer’s View)

2

Ideal Memory
n Zero access time (latency)
n Infinite capacity
n Zero cost
n Infinite bandwidth (to support multiple accesses in parallel)

3

Abstraction: Virtual vs. Physical Memory
n Programmer sees virtual memory

q Can assume the memory is “infinite”
n Reality: Physical memory size is much smaller than what

the programmer assumes
n The system (system software + hardware, cooperatively)

maps virtual memory addresses to physical memory
q The system automatically manages the physical memory

space transparently to the programmer

+ Programmer does not need to know the physical size of memory
nor manage it à A small physical memory can appear as a huge
one to the programmer à Life is easier for the programmer

-- More complex system software and architecture

A classic example of the programmer/(micro)architect tradeoff
4

Benefits of Automatic Management of Memory

n Programmer does not deal with physical addresses
n Each process has its own independent mapping of

virtualàphysical addresses

n Enables
q Code and data to be located anywhere in physical memory

(relocation and flexible location of data)
q Isolation/separation of code and data of different processes in

physical memory
(protection and isolation)

q Code and data sharing between multiple processes
(sharing)

5

Virtual Memory: Conceptual View
n Illusion of large, separate address space per process

6
Kim & Mutlu, “Memory Systems,” Computing Handbook, 2014

https://people.inf.ethz.ch/omutlu/pub/memory-systems-introduction_computing-handbook14.pdf

Process 1 Process 2

Requires indirection and mapping between virtual and physical spaces

7

A System with Virtual Memory (Page-based)

n Address Translation: The hardware converts virtual addresses into
physical addresses via an OS-managed lookup table (page table)

CPU

0:
1:

N-1:

Memory

0:
1:

P-1:

Page Table

Disk

Virtual
Addresses

Physical
Addresses

vi
rt
ua

l
vi
rt
ua

l

ph
ys
ic
al

Process 1

Process 2

4G
B

4G
B

16
M

B

Virtual Page

Virtual Page

Physical Page

Mappi
ng

Page-based Virtual-to-Physical Mapping

Address Translation

9H&H, Chapter 8.4

Four-level Paging in x86-64

10

Page Table Challenges

n Challenge 1: Page table is large
q at least part of it needs to be located in physical memory
q solution: multi-level (hierarchical) page tables

n Challenge 2: Each instruction fetch or load/store requires at
least two memory accesses:
1. one for address translation (page table read)
2. one to access data with the physical address (after translation)

n Two memory accesses to service an instruction fetch or
load/store greatly degrades execution time
q Num. of memory accesses increases with multi-level page tables
q Unless we are clever… à speed up the translation…

11

Supporting Virtual Memory
n Virtual memory requires both HW+SW support

q Page Table is in memory
q Can be cached in special hardware structures called Translation

Lookaside Buffers (TLBs)

n The hardware component is called the MMU (memory
management unit)
q Includes Page Table Base Register(s), TLBs, page walkers

n It is the job of the software to
q Populate page tables, decide what to replace in physical memory
q Change the Page Table Base Register on context switch (to use

the running thread’s page table)
q Handle page faults and ensure correct mapping

12

Three Major Issues in Virtual Memory
1. How large is the page table and how do we store and
access it?

2. How can we speed up translation & access control check?

3. When do we do the translation in relation to cache access?

n There are many other issues we will not cover in detail
q What happens on a context switch?
q How can you handle multiple page sizes?
q …

13

Four-level Paging in x86-64

14

Trade-Offs in Page Size
n Large page size (e.g., 1GB)

q Pro: Fewer PTEs required è Saves memory space
q Pro: Fewer Accesses during page table walk è Improves

performance

q Con: Cannot have fine-grained permissions
q Con: Large transfers to/from disk

n Even when only 1KB is needed, 1GB must be transferred
n Waste of bandwidth/energy
n Reduces performance

q Con: Internal fragmentation
n Even when only 1KB is needed, 1GB must be allocated
n Waste of space

X86-64 Page Table: Accessing 4KB pages

16
Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1

X86-64 Page Table: Accessing 2MB pages

17
Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1

X86-64 Page Table: Accessing 1GB pages

18
Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1

Three Major Issues in Virtual Memory
1. How large is the page table and how do we store and
access it?

2. How can we speed up translation & access control check?

3. When do we do the translation in relation to cache access?

n There are many other issues we will not cover in detail
q What happens on a context switch?
q How can you handle multiple page sizes?
q …

19

Virtual Memory Issue II
n How fast is the address translation?

q How can we make it fast?

n Idea: Use a hardware structure called MMU that accelerates
address translation

20

Evolution of Hardware Support for VM

21

Conventional Address Translation Modern Address Translation

L1 Data
TLB

L1 Instruction
TLB

 L1 Data Cache

L1 Data
TLB L1 ITLB

PTW
Cache L2 TLB

PTW Walker

 L1 Data CacheSoftware
Page Table Walker

Memory Management Unit
n The Memory Management Unit (MMU) is responsible

for resolving address translation requests
q One MMU per core (usually)

n MMU typically has three key components:
q Translation Lookaside Buffers that cache recently-used

virtual-to-physical translations (PTEs)
q Page Table Walk Caches that offer fast access to the

intermediate levels of a multi-level page table
q Hardware Page Table Walker that sequentially accesses

the different levels of the Page Table to fetch the required PTE

22

Intel Skylake: MMU

23

L1 Instruction
TLB

L1 Data
TLB

L2 Unified
TLB

Hardware
Page Table Walker

Page Walk
Caches

https://www.7-cpu.com/cpu/Skylake.html

https://www.7-cpu.com/cpu/Skylake.html

24

Speeding up Translation with a TLB
n A cache of address translations

q Avoids accessing the page table on every memory access

n Index = lower bits of VPN
(virtual page #)

n Tag = unused bits of VPN +
process ID

n Data = a page-table entry
n Status = valid, dirty

The usual cache design choices
(placement, replacement policy,
multi-level, etc.) apply here too.

Intel Skylake: L1 Data TLB

25

L1 Data
TLB

Intel Skylake: L1 Data TLB
n Separate L1 Data TLB structures for 4KB, 2MB, and 1GB pages

n L1 DTLB
q 4KB: 64-entry, 4-way, 1 cycle access, 9 cycle miss
q 2MB: 32-entry, 4-way, 1 cycle access, 9 cycle miss
q 1GB: 4 entry, fully-associative

26

n Virtual-to-physical mappings are inserted in the
corresponding TLB after a TLB miss

n During a translation request, all three L1 TLBs are looked
up in parallel

https://www.7-cpu.com/cpu/Skylake.html

https://www.7-cpu.com/cpu/Skylake.html

L1 Data TLB: Parallel Lookup Example

27

L1 4KB TLB

L1 2MB TLB

L1 1GB TLB
Set 0

Set 1

Set 2
Set 3

Set 0
Set 1 Set 0

Set 1

001010100100101000000000011100000001
Virtual

Address

31th bit to
index 1GB

22th bit to
index 2MB

13-14th bit to
index 4KB

Intel Skylake: L2 Unified I/D TLB

28

L2 Unified
TLB

Intel Skylake: L2 Unified TLB

29

n L2 Unified TLB caches translations for both instr. and data
q private per individual core

n 2 separate L2 TLB structures for 4KB/2MB and 1GB pages

n L2 TLB
q 4KB/2MB: 1536-entry, 12-way, 14 cycle access, 9 cycle miss
q 1GB: 16-entry, 4-way, 1 cycle access, 9 cycle miss penalty

n Challenge: How can the L2 TLB support both 4KB and 2MB
pages using a single structure?
(Not enough publicly available information for Intel Skylake)

https://www.7-cpu.com/cpu/Skylake.html

https://www.7-cpu.com/cpu/Skylake.html

L2 Unified TLB: Accessing the TLB

30

n The 4KB/2MB structure of the L2 TLB is probed in 2 steps

n Step 1: Assume the page size is 4KB, calculate the index bits
and access the L2 TLB
q If the tag matches, it is a hit. If the tag does not match, go to

Step 2.

n Step 2: Assume the page size is 2MB, re-calculate the index
and access the L2 TLB.
q If the tag matches, it is a hit. If the tag does not match, it is an

L2 TLB miss.

n General algorithm:
Re-calculate index and probe TLB for all remaining page sizes

Similar to “associativity in time” (also called pseudo-associativity)

Step 1: Calculate index for 4KB

31

L2 TLB

Set 0

Set 1

Set 2
Set 3

001010100100101000000000011100000001
Virtual

Address

13-14th bit to
index 4KB

Step 2: Re-calculate index for 2MB

32

L2 TLB

Set 0

Set 1

Set 2
Set 3

001010100100101000000000011100000001
Virtual

Address

22th-23th bit to
index 2MB

L2 TLB: N-Step Index Re-Calculation
n Pros:

+ Simple and practical implementation

33

n Cons:
- Varying L2 TLB hit latency (faster for 4KB, slower for 2MB)
- Slower identification of L2 TLB Miss as all page sizes need to be
tested

n Potential Optimizations:
1. Parallel Lookup: Look up for 4KB and 2MB pages in parallel
2. Page Size Prediction: Predict the probing order

Tradeoffs are similar to “associativity in time” (also called pseudo-associativity)

Handling TLB Misses
n The TLB is small; it cannot hold all PTEs

q Some translation requests will inevitably miss in the TLB
q Must access memory to find the required PTE

n Called walking the page table
n Large performance penalty

n Better TLB management & prefetching can reduce TLB misses

n Who handles TLB misses?
q Hardware or software?

Handling TLB Misses (II)
n Approach #1. Hardware-Managed (e.g., x86)

q The hardware does the page walk
q The hardware fetches the PTE and inserts it into the TLB

n If the TLB is full, the entry replaces another entry
q Done transparently to system software
q Can employ specialized structures and caches

n E.g., page walkers and page walk caches

n Approach #2. Software-Managed (e.g., MIPS)
q The hardware raises an exception
q The operating system does the page walk
q The operating system fetches the PTE
q The operating system inserts/evicts entries in the TLB

Handling TLB Misses (III)
n Hardware-Managed TLB

+ No exception on TLB miss. Instruction just stalls
+ Independent instructions may continue
+ No extra instructions/data brought into caches
-- Page directory/table organization is fetched into the system:
OS has little flexibility in deciding these

n Software-Managed TLB
+ The OS can define the page table oganization
+ More sophisticated TLB replacement policies are possible
-- Need to generate an exception à performance overhead due
to pipeline flush, exception handler execution, extra instructions
brought to caches

Hardware Page Table Walker

37

Hardware
Page Table Walker

Hardware Page Table Walker (I)
n A per-core hardware component that walks the multi-level

page table to avoid expensive context switches & SW handling

n HW PTW consists of 2 components:
q A state machine that is designed to be aware of the

architecture’s page table structure
q Registers that keep track of outstanding TLB misses

38

Hardware Page Table Walker

STATE
MACHINE

TLB Miss Registers

Hardware Page Table Walker (II)
n Pros:

+ Avoids the need for context switch on TLB miss
+ Overlaps TLB misses with useful computation
+ Supports concurrent TLB misses

39

n Cons:
- Hardware area and power overheads
- Limited flexibility compared to software page table walk

Hardware Page Table Walker (III)

40

n PTW accesses the CR3 register that maintains information
about the physical address of the root of the page table
(PML4)

n PTW concatenates the content of CR3 with the first 9 bits
of the virtual address

Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1

Hardware Page Table Walker (IV)
n Hardware PTWs allow overlapping TLB misses with useful

computation

41

Software PTW

Hardware PTW
Saved Cycles

LOAD A TLB Miss Context Switch – TLB Miss Handler LOAD B TLB Hit

LOAD A TLB Miss

LOAD B TLB Hit

Page Table Walk

VPN = 1 VPN = 5

VPN = 1

VPN = 5

Page Walk Caches

42

Page Walk
Caches

Page Walk Caches

43

n Page Walk Caches cache translations from non-leaf levels
of a multi-level page table to accelerate page table walks

n Page Walk Caches are low-latency caches that provide
faster access to the page table levels
n Faster compared to accessing the regular cache/memory

hierarchy for every page table walk

Intel Skylake: MMU

44

L1 Instruction
TLB

L1 Data
TLB

L2 Unified
TLB

Hardware
Page Table Walker

Page Walk
Caches

Modern Virtual Memory Designs
A14 “Firestorm”
(iPhone 12 Pro)

Intel/AMD/ARM

Decode
width

8 4, 5 (Samsung M3), 5 (Cortex-X1)

ROB size 630 352 (Intel Willow Cove)
Load/store
queue size

~148 outstanding loads
~106 outstanding stores

Intel Sunny Cove (128-LQ, 72-SQ)
AMD Zen3 (64-LQ, 44-SQ)

L1-TLB 256 entries 64 entries
L2-TLB 3072 entries 1536 entries
Page size 16KB 4KB
L1-I cache 192KB 48KB (Intel Ice Lake)
L1-D cache 128KB, 3-cycles 32KB (Intel/AMD), 4-cycles
L2 cache 8MB shared across two big-cores,

~16-cycles
1MB (Intel Cascade Lake)

L3 cache 16MB shared across all CPU cores
and integrated GPU

1.375 MB/core

45https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2
https://news.ycombinator.com/item?id=25257932

https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2
https://news.ycombinator.com/item?id=25257932

Virtual Memory and Cache Interaction

Address Translation and Caching
n When do we do the address translation?

q Before or after accessing the L1 cache?

n In other words, is the cache virtually addressed or
physically addressed?
q Virtual versus physical cache

n What are the issues with a virtually addressed cache?

n Synonym problem:
q Two different virtual addresses can map to the same physical

address à same physical address can be present in multiple
locations in the cache à can lead to inconsistency in data

47

Homonyms and Synonyms
n Homonym: Same VA can map to two different PAs

q Why?
n VA is in different processes

n Synonym: Different VAs can map to the same PA
q Why?

n Different pages can share the same physical frame within or
across processes

n Reasons: shared libraries, shared data, copy-on-write pages
within the same process, …

n Do homonyms and synonyms create problems when we
have a cache?
q Is the cache virtually or physically addressed?

48

Cache-VM Interaction

49

CPU

TLB

cache

lower
hier.

physical cache

CPU

cache

tlb

lower
hier.

virtual (L1) cache

VA

PA

CPU

cache tlb

lower
hier.

virtual-physical cache

VA

PA

VA

PA

Physical Cache

50

Virtual Cache

51

Virtual-Physical Cache

52

Virtually-Indexed Physically-Tagged
n If C≤(page_size ´ associativity), the cache index bits come only

from page offset (same in VA and PA)
n If both cache and TLB are on chip

q index both arrays concurrently using VA bits
q check cache tag (physical) against TLB output at the end

53

VPN Page Offset

TLB

PPN

Index BiB

physical
cache

tag data=

cache hit?TLB hit?

Virtually-Indexed Physically-Tagged
n If C>(page_size ´ associativity), the cache index bits include VPN
Þ Synonyms can cause problems
q The same physical address can exist in two locations

n Solutions?

54

VPN Page Offset

TLB

PPN

Index BiB

physical
cache

tag data=

cache hit?TLB hit?

a

Some Solutions to the Synonym Problem
n Limit cache size to (page size times associativity)

q get index from page offset

n On a write to a block, search all possible indices that can
contain the same physical block, and update/invalidate
q Used in Alpha 21264, MIPS R10K

n Restrict page placement in OS
q make sure index(VA) = index(PA)
q Called page coloring
q Used in many SPARC processors

55

n 32 KB, 64B cacheline size, 8-way associative, 64 sets

n Virtually-indexed physically-tagged (VIPT)

n #set-index bits (6) + #offset-bits (6) = log2(Page Size)
q No synonym problem

n “SEESAW: Using Superpages to Improve VIPT Caches, Parasar+, ISCA’18
n https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
n https://uops.info/cache.html
n https://www.7-cpu.com/cpu/Skylake.html

L1-D Cache in Intel Skylake

56

https://www.cs.yale.edu/homes/abhishek/mparasar-isca18.pdf
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
https://uops.info/cache.html
https://www.7-cpu.com/cpu/Skylake.html

Virtual Memory in Virtualized Environments
n Virtualized environments (e.g. Virtual Machines) need to

have an additional level of address translation

57

Guest - OS

Host - OS

CPU

Guest
Virtual

Guest-Physical /
Host-Virtual Host

Physical

Shadow Paging
n System maintains a new shadow page table which maps

guest-virtual page directly to host-physical page

n Guest-virtual to Guest-physical page table is read-only for
the Guest OS

n Pros:
+ Fast TLB Miss / Page Table Walk

n Cons:
- To maintain a consistent shadow page table, the system (e.g.,
VMM) handles every update to Guest and Host page tables

58

Shadow Paging

59

Guest Page Table

Host Page Table

Shadow Page Table

Guest Virtual Address

Host Physical Address

Guest Virtual Address

sCR3

Host Physical
Address

4 Memory Accesses

Nested Paging
n Nested paging is the widely used hardware technique to

virtualize memory in modern systems

n Two-dimensional hardware page-table walk:
q For every level of Guest Page table

n Perform a 4-level Host Page table walk

60

n Pros:
+ Easy for the system to maintain/update two page tables

n Cons:
- TLB Misses are more costly (up to 24 memory accesses)

Nested Paging

61

Guest Page Table

Host Page Table

Guest Physical Address

Guest Virtual Address

Host Physical Address

Guest Virtual Address

gCR3

Host Physical
Address

gPA gPA gPA gPA gPA

5 + 5 + 5 + 5 + 4 = 24 Memory Accesses

Lectures on Virtual Memory

62https://www.youtube.com/watch?v=PPR7YrBi7IQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=24

https://www.youtube.com/watch?v=PPR7YrBi7IQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=24

Lectures on Virtual Memory
n Computer Architecture, Spring 2015, Lecture 20

q Virtual Memory (CMU, Spring 2015)
q https://www.youtube.com/watch?v=2RhGMpY18zw&list=PL5PHm2jkkXmi5CxxI7b3
JCL1TWybTDtKq&index=22

n Computer Architecture, Fall 2020, Lecture 12c
q The Virtual Block Interface (ETH, Fall 2020)
q https://www.youtube.com/watch?v=PPR7YrBi7IQ&list=PL5Q2soXY2Zi9xidyIgBxUz7
xRPS-wisBN&index=24

63https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=2RhGMpY18zw&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=22
https://www.youtube.com/watch?v=PPR7YrBi7IQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=24
https://www.youtube.com/onurmutlulectures

P&S HW/SW Co-design
Lecture 3: Virtual Memory (II)

Konstantinos Kanellopoulos
Prof. Onur Mutlu

ETH Zurich
Spring 2022
13 April 2022

