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Memory (Programmer’s View) 
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Ideal Memory
n Zero access time (latency)
n Infinite capacity
n Zero cost
n Infinite bandwidth (to support multiple accesses in parallel)
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Abstraction: Virtual vs. Physical Memory
n Programmer sees virtual memory

q Can assume the memory is “infinite”
n Reality: Physical memory size is much smaller than what 

the programmer assumes
n The system (system software + hardware, cooperatively) 

maps virtual memory addresses to physical memory
q The system automatically manages the physical memory 

space transparently to the programmer

+ Programmer does not need to know the physical size of memory 
nor manage it à A small physical memory can appear as a huge 
one to the programmer à Life is easier for the programmer

-- More complex system software and architecture

A classic example of the programmer/(micro)architect tradeoff
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Benefits of Automatic Management of Memory

n Programmer does not deal with physical addresses
n Each process has its own independent mapping of 

virtualàphysical addresses

n Enables
q Code and data to be located anywhere in physical memory

(relocation and flexible location of data)
q Isolation/separation of code and data of different processes in 

physical memory
(protection and isolation)

q Code and data sharing between multiple processes
(sharing)
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Virtual Memory: Conceptual View 
n Illusion of large, separate address space per process

6
Kim & Mutlu, “Memory Systems,” Computing Handbook, 2014

https://people.inf.ethz.ch/omutlu/pub/memory-systems-introduction_computing-handbook14.pdf

Process 1 Process 2

Requires indirection and mapping between virtual and physical spaces
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A System with Virtual Memory (Page-based)

n Address Translation: The hardware converts virtual addresses into 
physical addresses via an OS-managed lookup table (page table)
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Address Translation

9H&H, Chapter 8.4



Four-level Paging in x86-64
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Page Table Challenges

n Challenge 1: Page table is large
q at least part of it needs to be located in physical memory
q solution: multi-level (hierarchical) page tables

n Challenge 2: Each instruction fetch or load/store requires at 
least two memory accesses:
1. one for address translation (page table read)
2. one to access data with the physical address (after translation)

n Two memory accesses to service an instruction fetch or 
load/store greatly degrades execution time
q Num. of memory accesses increases with multi-level page tables
q Unless we are clever… à speed up the translation…
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Supporting Virtual Memory
n Virtual memory requires both HW+SW support 

q Page Table is in memory
q Can be cached in special hardware structures called Translation 

Lookaside Buffers (TLBs)

n The hardware component is called the MMU (memory 
management unit)
q Includes Page Table Base Register(s), TLBs, page walkers

n It is the job of the software to
q Populate page tables, decide what to replace in physical memory 
q Change the Page Table Base Register on context switch (to use 

the running thread’s page table)
q Handle page faults and ensure correct mapping
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Three Major Issues in Virtual Memory
1. How large is the page table and how do we store and 
access it?

2. How can we speed up translation & access control check?

3. When do we do the translation in relation to cache access?

n There are many other issues we will not cover in detail
q What happens on a context switch?
q How can you handle multiple page sizes?
q …
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Four-level Paging in x86-64
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Trade-Offs in Page Size
n Large page size (e.g., 1GB)

q Pro: Fewer PTEs required è Saves memory space
q Pro: Fewer Accesses during page table walk è Improves 

performance

q Con: Cannot have fine-grained permissions
q Con: Large transfers to/from disk

n Even when only 1KB is needed, 1GB must be transferred
n Waste of bandwidth/energy
n Reduces performance

q Con: Internal fragmentation
n Even when only 1KB is needed, 1GB must be allocated
n Waste of space



X86-64 Page Table: Accessing 4KB pages
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Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1



X86-64 Page Table: Accessing 2MB pages
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Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1



X86-64 Page Table: Accessing 1GB pages
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Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1



Three Major Issues in Virtual Memory
1. How large is the page table and how do we store and 
access it?

2. How can we speed up translation & access control check?

3. When do we do the translation in relation to cache access?

n There are many other issues we will not cover in detail
q What happens on a context switch?
q How can you handle multiple page sizes?
q …
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Virtual Memory Issue II
n How fast is the address translation?

q How can we make it fast?

n Idea: Use a hardware structure called MMU that accelerates 
address translation
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Evolution of Hardware Support for VM
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Memory Management Unit 
n The Memory Management Unit (MMU) is responsible 

for resolving address translation requests
q One MMU per core (usually)

n MMU typically has three key components:
q Translation Lookaside Buffers that cache recently-used 

virtual-to-physical translations (PTEs)
q Page Table Walk Caches that offer fast access to the 

intermediate levels of a multi-level page table 
q Hardware Page Table Walker that sequentially accesses 

the different levels of the Page Table to fetch the required PTE
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Intel Skylake: MMU
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https://www.7-cpu.com/cpu/Skylake.html

https://www.7-cpu.com/cpu/Skylake.html
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Speeding up Translation with a TLB
n A cache of address translations

q Avoids accessing the page table on every memory access

n Index = lower bits of VPN 
(virtual page #)

n Tag = unused bits of VPN + 
process ID

n Data = a page-table entry
n Status = valid, dirty

The usual cache design choices
(placement, replacement policy,
multi-level, etc.) apply here too.



Intel Skylake: L1 Data TLB
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Intel Skylake: L1 Data TLB 
n Separate L1 Data TLB structures for 4KB, 2MB, and 1GB pages 

n L1 DTLB
q 4KB: 64-entry, 4-way, 1 cycle access, 9 cycle miss
q 2MB: 32-entry, 4-way, 1 cycle access, 9 cycle miss 
q 1GB: 4 entry, fully-associative

26

n Virtual-to-physical mappings are inserted in the 
corresponding TLB after a TLB miss

n During a translation request, all three L1 TLBs are looked 
up in parallel

https://www.7-cpu.com/cpu/Skylake.html

https://www.7-cpu.com/cpu/Skylake.html


L1 Data TLB: Parallel Lookup Example 
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L1 2MB TLB

L1 1GB TLB
Set 0 

Set 1 

Set 2 
Set 3 

Set 0 
Set 1 Set 0 

Set 1 
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Address

31th bit to 
index 1GB

22th bit to 
index 2MB

13-14th bit to 
index 4KB



Intel Skylake: L2 Unified I/D TLB
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Intel Skylake: L2 Unified TLB 
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n L2 Unified TLB caches translations for both instr. and data
q private per individual core

n 2 separate L2 TLB structures for 4KB/2MB and 1GB pages

n L2 TLB
q 4KB/2MB: 1536-entry, 12-way, 14 cycle access, 9 cycle miss
q 1GB: 16-entry, 4-way, 1 cycle access, 9 cycle miss penalty

n Challenge: How can the L2 TLB support both 4KB and 2MB 
pages using a single structure? 
(Not enough publicly available information for Intel Skylake)

https://www.7-cpu.com/cpu/Skylake.html

https://www.7-cpu.com/cpu/Skylake.html


L2 Unified TLB: Accessing the TLB 
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n The 4KB/2MB structure of the L2 TLB is probed in 2 steps

n Step 1: Assume the page size is 4KB, calculate the index bits 
and access the L2 TLB
q If the tag matches, it is a hit. If the tag does not match, go to 

Step 2.

n Step 2: Assume the page size is 2MB, re-calculate the index 
and access the L2 TLB. 
q If the tag matches, it is a hit. If the tag does not match, it is an 

L2 TLB miss. 

n General algorithm: 
Re-calculate index and probe TLB for all remaining page sizes

Similar to “associativity in time” (also called pseudo-associativity)



Step 1: Calculate index for 4KB

31

L2  TLB

Set 0 

Set 1 

Set 2 
Set 3 

001010100100101000000000011100000001
Virtual 

Address

13-14th bit to 
index 4KB



Step 2: Re-calculate index for 2MB
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Virtual 

Address
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L2 TLB: N-Step Index Re-Calculation
n Pros: 

+ Simple and practical implementation

33

n Cons: 
- Varying L2 TLB hit latency (faster for 4KB, slower for 2MB)
- Slower identification of L2 TLB Miss as all page sizes need to be                 
tested

n Potential Optimizations:
1. Parallel Lookup: Look up for 4KB and 2MB pages in parallel
2. Page Size Prediction: Predict the probing order

Tradeoffs are similar to “associativity in time” (also called pseudo-associativity)



Handling TLB Misses
n The TLB is small; it cannot hold all PTEs

q Some translation requests will inevitably miss in the TLB
q Must access memory to find the required PTE

n Called walking the page table
n Large performance penalty

n Better TLB management & prefetching can reduce TLB misses

n Who handles TLB misses? 
q Hardware or software?



Handling TLB Misses (II)
n Approach #1. Hardware-Managed (e.g., x86)

q The hardware does the page walk
q The hardware fetches the PTE and inserts it into the TLB

n If the TLB is full, the entry replaces another entry
q Done transparently to system software
q Can employ specialized structures and caches 

n E.g., page walkers and page walk caches

n Approach #2. Software-Managed (e.g., MIPS)
q The hardware raises an exception
q The operating system does the page walk
q The operating system fetches the PTE
q The operating system inserts/evicts entries in the TLB



Handling TLB Misses (III)
n Hardware-Managed TLB

+ No exception on TLB miss. Instruction just stalls
+ Independent instructions may continue
+ No extra instructions/data brought into caches
-- Page directory/table organization is fetched into the system: 
OS has little flexibility in deciding these

n Software-Managed TLB
+ The OS can define the page table oganization
+ More sophisticated TLB replacement policies are possible
-- Need to generate an exception à performance overhead due 
to pipeline flush, exception handler execution, extra instructions 
brought to caches 



Hardware Page Table Walker
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Hardware Page Table Walker (I)
n A per-core hardware component that walks the multi-level 

page table to avoid expensive context switches & SW handling

n HW PTW consists of 2 components:
q A state machine that is designed to be aware of the 

architecture’s page table structure
q Registers that keep track of outstanding TLB misses

38

Hardware Page Table Walker
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Hardware Page Table Walker (II)
n Pros:

+ Avoids the need for context switch on TLB miss
+ Overlaps TLB misses with useful computation
+ Supports concurrent TLB misses

39

n Cons:
- Hardware area and power overheads
- Limited flexibility compared to software page table walk



Hardware Page Table Walker (III)
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n PTW accesses the CR3 register that maintains information 
about the physical address of the root of the page table 
(PML4)

n PTW concatenates the content of CR3 with the first 9 bits 
of the virtual address

Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1



Hardware Page Table Walker (IV)
n Hardware PTWs allow overlapping TLB misses with useful 

computation
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Software PTW

Hardware PTW
Saved Cycles
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LOAD A TLB Miss

LOAD B TLB Hit
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Page Walk Caches
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Page Walk Caches
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n Page Walk Caches cache translations from non-leaf levels 
of a multi-level page table to accelerate page table walks

n Page Walk Caches are low-latency caches that provide 
faster access to the page table levels 
n Faster compared to accessing the regular cache/memory 

hierarchy for every page table walk



Intel Skylake: MMU
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Modern Virtual Memory Designs 
A14 “Firestorm” 
(iPhone 12 Pro)

Intel/AMD/ARM

Decode 
width

8 4, 5 (Samsung M3), 5 (Cortex-X1)

ROB size 630 352 (Intel Willow Cove)
Load/store 
queue size

~148 outstanding loads
~106 outstanding stores

Intel Sunny Cove (128-LQ, 72-SQ)
AMD Zen3 (64-LQ, 44-SQ)

L1-TLB 256 entries 64 entries
L2-TLB 3072 entries 1536 entries
Page size 16KB 4KB
L1-I cache 192KB 48KB (Intel Ice Lake)
L1-D cache 128KB, 3-cycles 32KB (Intel/AMD), 4-cycles
L2 cache 8MB shared across two big-cores, 

~16-cycles
1MB (Intel Cascade Lake)

L3 cache 16MB shared across all CPU cores 
and integrated GPU

1.375 MB/core

45https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2
https://news.ycombinator.com/item?id=25257932

https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2
https://news.ycombinator.com/item?id=25257932


Virtual Memory and Cache Interaction



Address Translation and Caching
n When do we do the address translation?

q Before or after accessing the L1 cache?

n In other words, is the cache virtually addressed or 
physically addressed?
q Virtual versus physical cache

n What are the issues with a virtually addressed cache?

n Synonym problem:
q Two different virtual addresses can map to the same physical 

address à same physical address can be present in multiple 
locations in the cache à can lead to inconsistency in data

47



Homonyms and Synonyms
n Homonym: Same VA can map to two different PAs

q Why? 
n VA is in different processes

n Synonym: Different VAs can map to the same PA
q Why? 

n Different pages can share the same physical frame within or 
across processes

n Reasons: shared libraries, shared data, copy-on-write pages 
within the same process, …

n Do homonyms and synonyms create problems when we 
have a cache?
q Is the cache virtually or physically addressed?

48



Cache-VM Interaction
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Physical Cache
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Virtual Cache
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Virtual-Physical Cache
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Virtually-Indexed Physically-Tagged
n If C≤(page_size ´ associativity), the cache index bits come only 

from page offset (same in VA and PA)
n If both cache and TLB are on chip

q index both arrays concurrently using VA bits
q check cache tag (physical) against TLB output at the end

53
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Virtually-Indexed Physically-Tagged
n If C>(page_size ´ associativity), the cache index bits include VPN 
Þ Synonyms can cause problems
q The same physical address can exist in two locations

n Solutions?

54
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Some Solutions to the Synonym Problem
n Limit cache size to (page size times associativity)

q get index from page offset 

n On a write to a block, search all possible indices that can 
contain the same physical block, and update/invalidate
q Used in Alpha 21264, MIPS R10K

n Restrict page placement in OS
q make sure index(VA) = index(PA)
q Called page coloring
q Used in many SPARC processors
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n 32 KB, 64B cacheline size, 8-way associative, 64 sets

n Virtually-indexed physically-tagged (VIPT)

n #set-index bits (6) + #offset-bits (6) = log2(Page Size)
q No synonym problem

n “SEESAW: Using Superpages to Improve VIPT Caches, Parasar+, ISCA’18
n https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
n https://uops.info/cache.html
n https://www.7-cpu.com/cpu/Skylake.html

L1-D Cache in Intel Skylake
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https://www.cs.yale.edu/homes/abhishek/mparasar-isca18.pdf
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
https://uops.info/cache.html
https://www.7-cpu.com/cpu/Skylake.html


Virtual Memory in Virtualized Environments
n Virtualized environments (e.g. Virtual Machines) need to 

have an additional level of address translation 
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Shadow Paging
n System maintains a new shadow page table which maps 

guest-virtual page directly to host-physical page 

n Guest-virtual to Guest-physical page table is read-only for 
the Guest OS

n Pros: 
+ Fast TLB Miss / Page Table Walk

n Cons: 
- To maintain a consistent shadow page table, the system (e.g., 
VMM) handles every update to Guest and Host page tables 

58



Shadow Paging 
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Guest Page Table

Host Page Table

Shadow Page Table

Guest Virtual Address

Host Physical Address

Guest Virtual Address

sCR3

Host Physical 
Address

4 Memory Accesses



Nested Paging
n Nested paging is the widely used hardware technique to 

virtualize memory in modern systems

n Two-dimensional hardware page-table walk:
q For every level of Guest Page table

n Perform a 4-level Host Page table walk  

60

n Pros: 
+ Easy for the system to maintain/update two page tables

n Cons: 
- TLB Misses are more costly (up to 24 memory accesses)



Nested Paging
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Guest Page Table

Host Page Table

Guest Physical Address

Guest Virtual Address

Host Physical Address

Guest Virtual Address

gCR3

 

Host Physical 
Address

gPA gPA gPA gPA gPA

5 + 5 + 5 + 5 + 4 = 24 Memory Accesses



Lectures on Virtual Memory

62https://www.youtube.com/watch?v=PPR7YrBi7IQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=24

https://www.youtube.com/watch?v=PPR7YrBi7IQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=24


Lectures on Virtual Memory
n Computer Architecture, Spring 2015, Lecture 20

q Virtual Memory (CMU, Spring 2015)
q https://www.youtube.com/watch?v=2RhGMpY18zw&list=PL5PHm2jkkXmi5CxxI7b3
JCL1TWybTDtKq&index=22

n Computer Architecture, Fall 2020, Lecture 12c
q The Virtual Block Interface (ETH, Fall 2020)
q https://www.youtube.com/watch?v=PPR7YrBi7IQ&list=PL5Q2soXY2Zi9xidyIgBxUz7
xRPS-wisBN&index=24

63https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=2RhGMpY18zw&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=22
https://www.youtube.com/watch?v=PPR7YrBi7IQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=24
https://www.youtube.com/onurmutlulectures
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