P&S Modern SSDs

Fine-Grained Mapping & Multi-Plane Operation-Aware Block Management

Dr. Jisung Park

Prof. Onur Mutlu

ETH Zürich

Spring 2022

15 April 2022

Recap: What We Have Discussed So Far

- SSD Organization
- NAND Flash Organization and Operations
- Advanced NAND Flash Commands
- FTL: Address Translation & Garbage Collection

Today's Agenda

Fine-Grained Mapping

Multi-plane Operation-Aware Blk. Mgmt.

I/O Mismatch b/w OS and NAND Flash

- The page size (i.e., minimum I/O unit) of NAND flash memory has continuously increased.
 - From 256 bytes to 16 KiB
 - Low area overhead and high bandwidth (size / latency)
- The logical block (or sector) size of file systems has also increased.
 - From 512 bytes to 4 KiB
 - To more efficiently work with NAND flash-based SSDs
 - Increasing the block size is not straightforward.
 - I/O handling is closely related OS memory management.
 - Memory page size = 4 KiB
 - Unnecessary fetch or eviction at the page cache

Inefficiencies due to the erase-before-write property

	LPA	PPA
0x00		_
	0x01	-
•	0x02	_
0x03		_
	0x04	-
	0x05	_
	•••	•••

Inefficiencies due to the erase-before-write property

	LPA	PPA
	0x00	_
	0x01	_
•	0x02	
	0x03	_
	0x04	_
	0x05	_
	•••	•••

Inefficiencies due to the erase-before-write property

	LPA	PPA
	0x00	-
	0x01	0x00
•	0x02	_
	0x03	_
	0x04	-
	0x05	_
	•••	•••

16 KiB

Inefficiencies due to the erase-before-write property

	LPA	PPA
	0x00	_
•	0x01	0x00
	0x02	_
	0x03	-
	0x04	_
	0x05	-
	•••	•••

Inefficiencies due to the erase-before-write property

Req (LBA: 0x01, Size: 2, DIR: W, Data: B, C)

0b 0000 0000 0000 0001 16-KiB Page Number 4-KiB Offset

	LPA	PPA	
	0x00	_	
•	0x01	0x00	
	0x02	-	
	0x03	_	
	0x04	_	
	0x05	_	
	•••		

Inefficiencies due to the erase-before-write property

Req (LBA: 0x01, Size: 2, DIR: W, Data: B, C)

0b 0000 0000 0000 0001 16-KiB Page Number 4-KiB Offset

LPA	PPA	
0x00	0x01	
0x01	0x00	
0x02	_	
0x03	_	
0x04	_	
0x05	_	

Inefficiencies due to the erase-before-write property

Req (LBA: 0x01, Size: 2, DIR: W, Data: B, C)

0b 0000 0000 0000 0001 16-KiB Page Number 4-KiB Offset

I DA	DD4
<u>LPA</u>	<u>PPA</u>
0x00	0x01
0x01	0x00
0x02	_
0x03	-
0×04 -	
0x05	-
•••	•••

- 1. Why at the middle of the page?
 - To keep the 4-KiB offset: mapping table stores only the index of the 16-KiB page!
- 2. Why not using the unused space in physical page 0x00?
 - That space is already mapped to logical pages 0x05~0x07 (not written yet).

Inefficiencies due to the erase-before-write property

Req (LBA: 0x07, Size: 1, DIR: W, Data: D)

0b <u>0000 0000 0000 0111</u> 16-KiB Page Number 4-KiB Offset

LPA	PPA
0x00	0x01
0x01	0x00
0x02	-
0x03	_
0x04	_
0x05	ı
•••	•••

Q: Can we use the unused space?

A: Not likely, because

- Data randomization Cells in the unused space have been already programmed.
- Program-order constraint Re-programming physical page 0×00 can affect the reliability of the data stored in physical page 0×01 .

Inefficiencies due to the erase-before-write property

Reg (LBA: 0x07, Size: 1, DIR: W, Data: D) 0b 0000 0000 0000 0111 16-KiB Page Number 4-KiB Offset **Unused yet discarded PPA** 0x00 LPA **PPA** 0x000x01 0x01 B Block 0 <u>0x</u>01 0x00 0×02

Small writes cause waste of P/E cycles: More frequent garbage collections

→ Performance and lifetime degradation

		,	
•••	•••	•••	

Inefficiencies due to the erase-before-write property

	LPA	PPA
	0x00	0x01
	0x01	0x00
•	0x02	-
	0x03	_
	0x04	_
	0x05	_
		•••

Inefficiencies due to the erase-before-write property

	LPA	PPA
	0x00	0x01
	0x01	0x00
•	0x02	-
	0x03	-
	0x04	-
	0x05	_
		•••

Modify

Inefficiencies due to the erase-before-write property

Inefficiencies due to the erase-before-write property

Small writes cause read-modify-writes:
Waste of P/E cycles + additional read operations
→ Performance and lifetime degradation

Write a page only when there are sufficient data blocks

Req (LBA: 0x04, Size: 1, DIR: W, Data: A)

Req (LBA: 0x01, Size: 2, DIR: w, Data: B, C)

Req (LBA: 0x07, Size: 1, DIR: w, Data: D)

O		
i	i	i
İ	İ	i

Page Buffer

	LPA	PPA
	0x00	_
	0x01	_
		_
	0×04	_
		-
	0x07	-

Write a page only when there are sufficient data blocks

Req (LBA: 0x04, Size: 1, DIR: W, Data: A)

Req (LBA: 0x01, Size: 2, DIR: w, Data: B, C)

Page 1	Buffer
--------	--------

	i	i	i
_	1	1	I
^	I	1	I
A	!	1	1
	!	!	!
	!	!	!

	LPA	PPA
	0x00	_
	0x01	_
		-
	0×04	_
•		_
	0x07	

Write a page only when there are sufficient data blocks

Req (LBA: 0x04, Size: 1, DIR: W, Data: A)

Req (LBA: 0x01, Size: 2, DIR: w, Data: B, C)

Page	Buffer
-------------	---------------

	i		i
_	I	1	I
^	1		I
A			I
	!		!

	LPA	PPA
	0x00	_
	0x01	_
		_
	0×04	0x00
•		_
	0x07	_

Write a page only when there are sufficient data blocks

Req (LBA: 0×04 , Size: 1, DIR: W, Data: A)

Req (LBA: 0x01, Size: 2, DIR: W, Data: B, C)

Page Buffer		
A		

LPA	PPA
0x00	_
0x01	_
i 	=
0x04	0x00
•••	_
0x07	_

Write a page only when there are sufficient data blocks

Req (LBA: 0x04, Size: 1, DIR: w, Data: A)

Req (LBA: 0x01, Size: 2, DIR: W, Data: B, C)

Page	Buffer
------	--------

Λ	D	C	
A	В	L	

	LPA	PPA
	0x00	_
<u> </u>	0x01	_
	0x04	0x00
	•••	_
	0x07	_

Write a page only when there are sufficient data blocks

Req (LBA: 0x04, Size: 1, DIR: W, Data: A)

Req (LBA: 0x01, Size: 2, DIR: W, Data: B, C)

Page	Buffer
------	--------

A	В	C	

	LPA	PPA
	0x00	-
	0x01	0x01
\	,	·
	0×04	0x00
	•••	-
	0x07	ı
	•••	

Write a page only when there are sufficient data blocks

Req (LBA: 0x04, Size: 1, DIR: W, Data: A)

Req (LBA: 0x01, Size: 2, DIR: w, Data: B, C)

Page	Buffer
-------------	--------

A	В	С	
	1		

LPA	PPA
0x00	_
0x01	0x01
•••	_
0x04	0x00
	_
0x07	_

Write a page only when there are sufficient data blocks

Req (LBA: 0x04, Size: 1, DIR: W, Data: A)

Req (LBA: 0x01, Size: 2, DIR: w, Data: B, C)

Page Buffer

	İ	i	
Λ	D	C	n
A	B	L	ע ו
	į.	į	i

LPA	PPA
0x00	_
0x01	0x01
•••	_
0x04	0x00
,	
0x07	_

Write a page only when there are sufficient data blocks

Reg (LBA: 0×04 , Size: 1, DIR: W, Data: A)

Req (LBA: 0x01, Size: 2, DIR: w, Data: B, C)

Page B	uffer
--------	-------

	i	i	i	
Α	T)	C	D
A	i I	5 :	C	D
	- 1 -	-	_	_

	LPA	PPA	
	0x00	_	
	0x01	0x01	
	•••	_	
	0x04	0x00	
		_	
	0x07	0 x 03	
•			

Write a page only when there are sufficient data blocks

Req (LBA: 0x01, Size: 2, DIR: w, Data: B, C)

Req (LBA: 0x07, Size: 1, DIR: W, Data: D)

LPA	PPA
0x00	-
0x01	0x01
	_

Page Buffer

Fine-grained mapping significantly reduces the number of NAND flash operations: 3 writes (+1 read) → 1 writes

Drawbacks of Fine-Grained Mapping

- Larger mapping table
 - □ 16-KiB mapping \rightarrow 4 bytes per 16-KiB page = 0.025%
 - □ 4-KiB mapping \rightarrow 4 bytes per 4-KiB page = 0.1%
 - For a 2-TB SSD, 2-GB DRAM is required.
 - Increases the SSD's price and power/energy consumption
- Data durability of written data
 - Page buffers are implemented by using volatile memory (e.g., SRAM or DRAM).

Despites non-negligible drawbacks, fine-grained mapping is widely used in modern SSDs due to its high benefits

Today's Agenda

Fine-Grained Mapping

Multi-plane Operation-Aware Blk. Mgmt.

Recap: Multi-Plane Operations

- Concurrent operations on different planes
 - Recall: Planes share WLs and row/column decoders

- Opportunity: Planes can concurrently operate
- Constraints: Only for the same operations on the same page offset

Multi-Plane-Aware Data Placement

- To perform as many multi-plane operations as possible
 - Flush N_{plane} pages at once after buffering them

Multi-Plane-Aware Data Placement

- To perform as many multi-plane operations as possible
 - Flush N_{plane} pages at once after buffering them

Page buffer

Multi-Plane-Aware Data Placement

- To perform as many multi-plane operations as possible
 - Flush N_{plane} pages at once after buffering them
 - Need to keep the write points of all planes to be the same
 - Superblock-based block management

Multi-Plane-Aware Block Management

 Recap: For reducing the performance overhead of garbage collection, the FTL can select the block with the largest number of invalid pages (called a greedy policy).

Multi-Plane-Aware Block Management

 Recap: For reducing the performance overhead of garbage collection, the FTL can select the block with the largest number of invalid pages (called a greedy policy).

Multi-Plane-Aware Block Management

 Recap: For reducing the performance overhead of garbage collection, the FTL can select the block with the largest number of invalid pages (called a greedy policy).

 Recap: For reducing the performance overhead of garbage collection, the FTL can select the block with the largest number of invalid pages (called a greedy policy).

Offset management: Die level or SSD level?

Multi-plane operations can significantly improve SSD performance, but requires proper management in FTL

P&S Modern SSDs

Fine-Grained Mapping & Multi-Plane Operation-Aware Block Management

Dr. Jisung Park

Prof. Onur Mutlu

ETH Zürich

Spring 2022

15 April 2022