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Mohammed Alser

n Lecturer and Senior Researcher, SAFARI Research Group, ETH Zürich,           
since Sept. 2018.

n PhD from Bilkent University (Turkey) 2018, worked at UCLA, TU Dresden, and 
PETRONAS.

n Received the IEEE Turkey Doctoral Dissertation Award and a number of
international prestigious awards.

n https://twitter.com/mealser

n My main research is in bioinformatics, computational genomics, 
metagenomics, and computer architecture. 

n I am especially excited about building new data structures, algorithms, 
and architectures that make intelligent genome analysis a reality.

2

https://safari.ethz.ch/
https://ethz.ch/en.html
https://arxiv.org/abs/1910.03936
https://site.ieee.org/turkey/2018-yili-ieee-turkiye-bilim-odulleri-sahiplerini-buldu/
https://twitter.com/mealser


Agenda for Today
n What is Genome Analysis?
n What is Intelligent Genome Analysis?

n How we Analyze Genome?
n What are the Barriers to Enabling Intelligent Analyses?

n Algorithmic & Hardware Acceleration 
q Seed Filtering Technique
q Pre-alignment Filtering Technique
q Read Alignment Acceleration

n Where is Genomic Analyses Going Next?
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Intelligent Genome Analysis

5

Mohammed Alser, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao, 
Gagandeep Singh, Juan Gomez-Luna, Onur Mutlu
“From Molecules to Genomic Variations: Intelligent Algorithms and Architectures for 
Intelligent Genome Analysis”
Computational and Structural Biotechnology Journal, 2022
[Source code]

https://arxiv.org/abs/2205.07957
https://arxiv.org/abs/2205.07957
https://github.com/CMU-SAFARI/Molecules2Variations


What is Data Analysis?

“The purpose of computing is [to gain] 

insight, not numbers” 

6

Richard Hamming



We need to gain insights 
and observations 

much more efficiently 
than ever before
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Major Generators of Big Data
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Astronomy
25 zetta-bytes/year

Twitter
0.5-15 billion tweets/year

YouTube
500-900 million hours/year

Genomics
1 zetta-bases/year

“Big data: astronomical or genomical?”, PLoS biology, 2015.

Big data is everywhere …

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002195


Angstrom (10-10m) Era of Semiconductors

9https://siliconangle.com/2021/07/26/angstrom-era-intel-unveils-ambitious-
semiconductor-roadmap-goes-beyond-1nm-chips/



What is Intelligent Data Analysis?

n The science and art of revealing previously 
unknown and potentially valuable information or 
knowledge from data while meeting functional, 
performance, energy consumption, cost, and other 
specific goals

10Adapted from the definition of data mining



11

What is a Genome?

An organism’s complete set of genetic instructions

https://onlinelearning.hms.harvard.edu/hmx/courses/genetic-testing/
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CCTCCTCAGTGCCACCCAGCCCACTGGCAGCTCCCAAACA
GGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTG
AGGTGTCAAGGACCTAAACTAAAAAAAAAAAAAGAAAA
AGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAA
AAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATG
TGCTAAACAGCACTTTTTTGACCATTATTTTGGATCTGAAA
GAAATCAAGAATAAATGAAGGACTTGATACATTGGAAGA
GGAGAGTCAAGGACCTACAGAAAAAAAAAAAAAAGAAA
AAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGA
AAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAAT
GTCTGTGTTGCAGGTCTTCTTGCATTTCCCTGTCAAAAGA
AAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTA
ATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCAGGCC
GGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTG



How Large is a Genome?

13

~3.2 billion genomic basesPrime Tower, Zurich



How About Other Species?
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Phi X174 virus

5.386 Killo bp

E. coli O157:H7

5.44 Million bp

Homo Sapiens

3.2 Billion bp

Onion, Allium Cepa

16 Billion bp

Paris Japonica

149 Billion bp



DNA Testing

15https://www.myheritage.ch/dna https://www.23andme.com/

https://www.myheritage.ch/dna
https://www.23andme.com/


Human Chromosomes (23 Pairs)
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From 
mom

From 
dad



Human Chromosomes (23 Pairs)
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human chromosome #12
from HeLa’s cell

DNA Under Electron Microscope
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human chromosome #12
from HeLa’s cell

DNA Under Electron Microscope
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human chromosome #12
from HeLa’s cell

DNA Under Electron Microscope



The Central Dogma of Molecular Biology

21

Phenotypes Genotypes 



Cells of Different Organs and Tissues
n All the cells in a person's body have the same DNA and the 

same genes.
q Expression of the genes differs between cells. 
q But not all genes are used or expressed by those cells.

22

. . .

. . .
20,000-25,000
human genes

NIH 2009 National DNA Day



…ACATGCCGACATTTCATAGGCC…
…ACATGCCGACATTTCATAAGCC…
…ACATGCCGACATTTCATAGGCC…
…ACATGCCGACATTTCATAAGCC…
…ACATGCCGACATTTCATAGGCC…
…ACATGCCGACATTTCATAGGCC…
…ACATGCCGACATTTCATAAGCC…
…ACATGCCGACATTTCATAAGCC…
…ACATGTCGACATTTCATAGGCC…
…ACATGTCGACATTTCATAAGCC…
…ACATGTCGACATTTCATAGGCC…
…ACATGTCGACATTTCATAAGCC…
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SNP1                           SNP2             Blood Pressure
180
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120
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100

Finding SNPs Associated with Complex Trait

Eleazar Eskin: Discovering the Causal Variants Involved in GWAS Studies, CGSI 2018, UCLA 

Individual #1
Individual #2
Individual #3
Individual #4
Individual #5
Individual #6
Individual #7
Individual #8
Individual #9

Individual #10
Individual #11
Individual #12
Individual #13
Individual #14
Individual #15
Individual #16
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SNP: single nucleotide polymorphism

computationalgenomics.bioinformatics.ucla.edu/portfolio/eleazar-eskin-discovering-the-causal-variants-involved-in-gwas-studies


Genome-Wide Association Study (GWAS)
n Detecting genetic variants associated with phenotypes 

using two groups of people.

24
Manhattan plot

variant with higher frequency in cases than controls

https://onlinelearning.hms.harvard.edu/hmx/courses/genetic-testing/ 



Similar Association Studies

25
Wainberg+, "Opportunities and challenges for transcriptome-wide 
association studies”, Nature genetics, 2019.

https://www.nature.com/articles/s41588-019-0385-z
https://www.nature.com/articles/s41588-019-0385-z


SNPs and Personalized Medicine 

26https://opensnp.org/snps/rs12979860



Much Larger Structural Variations!
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AUTISM
Weiss, N Eng J Med 2008
Deletion of 593 kb

OBESITY
Walters, Nature 2010
Deletion of 593 kb

SCHIZOPHRENIA
McCarthy, Nat Genet 2009
Duplication of 593 kb

UNDERWEIGHT
Jacquemont, Nature 2011
Duplication of 593 kb

Deletion in the short arm 
of chromosome 16 (16p11.2)

Duplication in the short arm 
of chromosome 16 (16p11.2)

CNV: copy number variation



Recommended Reading
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Ho+, "Structural variation in the sequencing era", Nature Reviews Genetics, 2020

https://www.nature.com/articles/s41576-019-0180-9
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What is Intelligent Genome Analysis?
n Fast genome analysis

q Real-time analysis?

n Population-scale genome analysis
q Number of analyses per day!

n Using intelligent architectures
q Small specialized HW with less data movement

n DNA is a valuable asset
q Controlled-access analysis

n Avoiding erroneous analysis
q E.g., your father is not your father

30

Bandwidth

Scalability 

Energy-efficiency &
Portability

Privacy

Accuracy
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Does intelligent genome 
analysis really matter?



Fast Genome Analysis?
n Fast genome analysis in mere seconds using limited 

computational resources (i.e., personal computer or small 
hardware).

32

1997 2015     



Personalized Medicine for Critically Ill Infants

33Farnaes+, “Rapid whole-genome sequencing decreases infant morbidity and 
cost of hospitalization”, NPJ Genomic Medicine, 2018

n rWGS can be performed in 2-day (costly) or 5-day time to 
interpretation. 

n Diagnostic rWGS for infants
q Avoids morbidity
q Reduces hospital stay length by 6%-69%
q Reduces inpatient cost by $800,000-$2,000,000.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884823/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884823/


Personalized Medicine in UK

34

“From 2019, all seriously ill children in UK 

will be offered whole genome sequencing 
as part of their care”



Population-Scale Genomics
n Characterizing genomic variations of 49,962 Icelanders took 

4.15 million CPU hours or 83 CPU hours per sample on 
average

35

“GraphTyper2 enables population-scale genotyping of structural variation using 
pangenome graphs”, Nature Communications, 2019

Sample 1

Sample 2

...

https://www.nature.com/articles/s41467-019-13341-9
https://www.nature.com/articles/s41467-019-13341-9


Rapid Surveillance of Disease Outbreaks?

36
Quick+, “Real-time, portable genome sequencing for Ebola surveillance”, Nature, 2016

https://www.nature.com/articles/nature16996


Scalable SARS-CoV-2 Testing
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Bloom+, "Swab-Seq: A high-throughput platform for massively scaled up SARS-
CoV-2 testing", Nature Biomedical Engineering, 2021

https://www.medrxiv.org/content/10.1101/2020.08.04.20167874v2
https://www.medrxiv.org/content/10.1101/2020.08.04.20167874v2


Population-Scale Microbiome Profiling

38https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/

https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/


Population-Scale Microbiome Profiling

39https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/

Goal: What organisms are present in a given 
environment and how abundant are they?

https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/


Petabase-scale Viral Discovery
n Building and Profiling 3,500 genomic assemblies needs 

28,000 virtual AWS CPUs.

40

Edgar+, "Petabase-scale sequence alignment catalyses viral discovery", Nature 2022

https://serratus.io/

https://www.nature.com/articles/s41586-021-04332-2
https://serratus.io/


City-Scale Microbiome Profiling

41

Afshinnekoo+, "Geospatial Resolution of Human and 
Bacterial Diversity with City-Scale Metagenomics", Cell 
Systems, 2015

https://www.cell.com/cell-systems/pdfExtended/S2405-4712(15)00002-2
https://www.cell.com/cell-systems/pdfExtended/S2405-4712(15)00002-2


Population-Scale Microbiome Profiling

42
Danko+, "A global metagenomic map of urban microbiomes and antimicrobial resistance", Cell, 2021

https://www.cell.com/cell/fulltext/S0092-8674(21)00585-7


Plague in New York Subway System?

43



Plague in New York Subway System?
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The findings of Yersinia Pestis in the subway received wide coverage in the lay 
press, causing some alarm among New York residents

https://www.nytimes.com/2015/02/07/nyregion/bubonic-plague-in-
the-subway-system-dont-worry-about-it.html

https://www.nytimes.com/2015/02/07/nyregion/bubonic-plague-in-the-subway-system-dont-worry-about-it.html
https://www.nytimes.com/2015/02/07/nyregion/bubonic-plague-in-the-subway-system-dont-worry-about-it.html


Failure of Bioinformatics

45

Living in a microbial world
Charles Schmidt
Nature Biotechnology, volume 35, pages401–403 (2017)
https://www.nature.com/articles/nbt.3868

https://www.nature.com/articles/nbt.3868
https://www.nature.com/articles/nbt.3868


CAMI Consortium
F. Meyer, A. Fritz, Z.L. Deng, D. Koslicki, A. Gurevich, G. Robertson, Mohammed
Alser, and others
“Critical Assessment of Metagenome Interpretation - the second round of 
challenges”, Nature Methods, 2022
[Source Code]
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https://www.biorxiv.org/content/10.1101/2021.07.12.451567v1.abstract
https://www.biorxiv.org/content/10.1101/2021.07.12.451567v1.abstract
https://github.com/CAMI-challenge/second_challenge_evaluation


Metalign

47

Nathan LaPierre, Mohammed Alser, Eleazar Eskin, David Koslicki, Serghei Mangul
“Metalign: efficient alignment-based metagenomic profiling via containment min hash” 
Genome Biology, September 2020.
[Talk Video (7 minutes) at ISMB 2020]
[Source code]

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02159-0
https://www.youtube.com/watch?v=dh3RHrkbaZA
https://github.com/nlapier2/Metalign


MiCoP

50

Nathan LaPierre, Serghei Mangul, Mohammed Alser, Igor Mandric, Nicholas C. Wu, 
David Koslicki & Eleazar Eskin
“MiCoP: microbial community profiling method for detecting viral and fungal organisms 
in metagenomic samples” 
BMC Genomics, June 2019.
[Source code]

https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-5699-9
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-5699-9
https://github.com/smangul1/MiCoP


How About Reliability? 

51https://www.bbc.com/future/article/20221011-how-space-weather-causes-computer-errors



Challenging Environment in Outer Space

52https://spaceref.com/space-stations/nasa-space-station-on-orbit-status-6-
august-2020-working-in-the-kibo-laboratory/

https://spaceref.com/space-stations/nasa-space-station-on-orbit-status-6-august-2020-working-in-the-kibo-laboratory/
https://spaceref.com/space-stations/nasa-space-station-on-orbit-status-6-august-2020-working-in-the-kibo-laboratory/


Intelligent Architecture?

53
(General Purpose) GPUs

Heterogeneous
Processors and 

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

FPGAs Modern systems

?
Sequencing 

Machine



Intelligent Architecture?
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(General Purpose) GPUs

Heterogeneous
Processors and 

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

FPGAs Modern systems

?
Sequencing 

Machine

https://nanoporetech.com/products/smidgion

https://nanoporetech.com/products/smidgion


Privacy-Preserving Genome Analysis?

55

Alser+, "Can you really anonymize the donors of genomic data in today’s digital 
world?" 10th International Workshop on Data Privacy Management (DPM), 2015.

https://link.springer.com/chapter/10.1007/978-3-319-29883-2_16
https://link.springer.com/chapter/10.1007/978-3-319-29883-2_16


Can you Really Anonymize the Donors?

56

Alser+, "Can you really anonymize the donors of genomic data in today’s 
digital world?" 10th International Workshop on Data Privacy Management 
(DPM), 2015.

https://link.springer.com/chapter/10.1007/978-3-319-29883-2_16
https://link.springer.com/chapter/10.1007/978-3-319-29883-2_16


Privacy-Preserving DNA Test

57https://nebula.org/whole-genome-sequencing/

https://nebula.org/whole-genome-sequencing/


We Need Faster & Scalable Genome Analysis

58

Predicting the presence and relative 
abundances of microbes in a sample

Understanding genetic variations

Rapid surveillance of disease outbreaks Developing personalized medicine

And many other applications …



Applications are only 
limited by our imagination

59



Fundamentally New Storage Architectures

60

215,000 terabytes of data stored 
in a single gram of DNA

“A DNA-of-things storage architecture to create materials with embedded 
memory”, Nature Biotechnology, 2020

https://www.nature.com/articles/s41587-019-0356-z?nature.com
https://www.nature.com/articles/s41587-019-0356-z?nature.com


New Personalized Shopping Paradigm

61https://www.dnanudge.com/

https://www.dnanudge.com/


Achieving Intelligent Genome Analysis?

How and where to enable

fast, accurate, cheap, 

privacy-preserving, and exabyte scale 
analysis of genomic data?

62



Agenda for Today
n What is Genome Analysis?
n What is Intelligent Genome Analysis?

n How we Analyze Genome?
n What are the Barriers to Enabling Intelligent Analyses?

n Algorithmic & Hardware Acceleration 
q Seed Filtering Technique
q Pre-alignment Filtering Technique
q Read Alignment Acceleration

n Where is Genomic Analyses Going Next?
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How to Analyze a Genome?

64

>CCTCCTCAGTGCCACCCAGCCCACTGGCAGCTCCCAAACAGGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTGAGGTGTCAAG
GACCTAAACTAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTT
CATGTCAAGGACCTAATGTGCTAAACAGCACTTTTTTGACCATTATTTTGGATCTGAAAGAAATCAAGAATAAATGAAGGACTTGATACATTG
GAAGAGGAGAGTCAAGGACCTACAGAAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAA
ACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCTGTGTTGCAGGTCTTCTTGCATTTCCCTGTCAAAAGAAAAAGAATTTAAAATTT
AAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCAGGCCAAGAGTTGCAAAAAAAAAAAAAGAAAAA
GAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTAGCCAGAATGG
TTGTGGGATGGGAGCCTCTGTGGACCGACCAGGTAGCTCTCTTTTCCACACTGTAGTCTCAAAGCTTCTTCATGTGGTTTCTCTGAGTGAAA
AAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTTTTCATGTCAAGGACC
TAATGTAGCTATACTGAACGTTATCTAGGGGAAAGATTGAAGGGGAGCTCTAAGGTCAACACACCACCACTTCCCAGAAAGCTTCTTCA……

machine gives the complete 
sequence of genome as output

NO



How to Analyze a Genome?

65

>CCTCCTCAGTGCCACCCAGCCCACTGGCAGCTCCCAAACAGGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTGAGGTGTCAAG
GACCTAAACTAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTT
CATGTCAAGGACCTAATGTGCTAAACAGCACTTTTTTGACCATTATTTTGGATCTGAAAGAAATCAAGAATAAATGAAGGACTTGATACATTG
GAAGAGGAGAGTCAAGGACCTACAGAAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAA
ACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCTGTGTTGCAGGTCTTCTTGCATTTCCCTGTCAAAAGAAAAAGAATTTAAAATTT
AAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCAGGCCAAGAGTTGCAAAAAAAAAAAAAGAAAAA
GAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTAGCCAGAATGG
TTGTGGGATGGGAGCCTCTGTGGACCGACCAGGTAGCTCTCTTTTCCACACTGTAGTCTCAAAGCTTCTTCATGTGGTTTCTCTGAGTGAAA
AAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTTTTCATGTCAAGGACC
TAATGTAGCTATACTGAACGTTATCTAGGGGAAAGATTGAAGGGGAGCTCTAAGGTCAACACACCACCACTTCCCAGAAAGCTTCTTCA……

machine gives the complete 
sequence of genome as output

NO

Why?!



Intelligent Genome Analysis

66

Mohammed Alser, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao, 
Gagandeep Singh, Juan Gomez-Luna, Onur Mutlu
“From Molecules to Genomic Variations: Intelligent Algorithms and Architectures for 
Intelligent Genome Analysis”
Computational and Structural Biotechnology Journal, 2022
[Source code]

https://arxiv.org/abs/2205.07957
https://arxiv.org/abs/2205.07957
https://github.com/CMU-SAFARI/Molecules2Variations
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human chromosome #12
from HeLa’s cell

DNA Under Electron Microscope



Untangling Yarn Balls & DNA Sequencing

68



Genome Sequencer is a Chopper

69

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACG CCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT
ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

44 hours

1x1012 bases

* NovaSeq 6000

*

*

<1000 $

Read Mapping

Reads



Genome Sequencer is a Chopper

70

Current sequencing machine provides 
small randomized fragments 

of the original DNA sequence

Alser+, "Technology dictates algorithms: Recent developments in read alignment", Genome Biology, 
2021

Read Mapping

Reads

https://arxiv.org/abs/2003.00110


Genome Analysis in Real Life

71

Sample Collection

Library 
Preparation

Sequencing

Genomic Analyses
DNA 

Molecule

Chopped 
DNA 

Fragments Raw Sequencing 
Data

Computational 
Steps



Sequencing Technologies
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Oxford Nanopore 
(ONT)

PacBio (HiFi, CLR) Illumina

… and more! All produce data with different properties.



Oxford Nanopore Sequencers

73https://nanoporetech.com/products/comparison

MinION
Mk1B

MinION 
Mk1C GridION Mk1 PromethION 

24
PromethION

48

Read length > 2Mb > 2Mb > 2Mb > 2Mb > 2Mb

Yield per flow cell 50 Gb 50 Gb 50 Gb 220 Gb 220 Gb

Number of flow 
cells per device 1 1 5 24 48

Yield per device <50 Gb <50 Gb <250 Gb <5.2 Tb <10.5 Tb

Starting price $1,000 $4,990 $49,995 $195,455 $327,455

https://nanoporetech.com/products/comparison


Illumina Sequencers

74

Run time 9.5–19 hrs 4–24 hrs 4–55 hrs 12–30 hrs 24-48 hrs 13-44 hrs

Max. reads 
per run 4 million 25 million 25 million 400 million 1 billion 20 billion

Max. read 
length 2 × 150 bp 2 × 150 bp 2 × 300 bp 2 × 150 bp 2 × 150 bp 2 x 250

Max. output 1.2 Gb 7.5 Gb 15 Gb 120 Gb 300 Gb 6000 Gb

Estimated 
price $19,900 $49,500 $128,000 $275,000 $335,000 $985,000

https://www.illumina.com/systems/sequencing-platforms.html

https://www.illumina.com/systems/sequencing-platforms.html


Different Raw Sequencing Data

Illumina

.BCL/.CBCL

ONT

.FAST5

PacBio

30-hour movieSquiggle

.BAM

Multiple images



How Does Illumina Machine Work?

76
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How Does Illumina Machine Work?
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TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACG CCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT
ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

DNA fragment = Read



How Does Illumina Machine Work?
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ACGACTTTAGTACGTACGT
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ACGTACG CCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT
ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

DNA fragment = Read

Check Illumina virtual tour:
https://emea.illumina.com/systems/sequencing-platforms/iseq/tour.html

https://emea.illumina.com/systems/sequencing-platforms/iseq/tour.html


How Does Nanopore Machine Work?

79

n Nanopore is a nano-scale hole (<20nm).
n In nanopore sequencers, an ionic current passes through the nanopores
n When the DNA strand passes through the nanopore, the sequencer 

measures the the change in current
n This change is used to identify the bases in the strand with the help of 

different electrochemical structures of the different bases

graphene 
nanopore DNA 

strand

Figure is adapted from: https://phys.org/news/2013-12-gene-sequencing-future.html

https://phys.org/news/2013-12-gene-sequencing-future.html


How Does Nanopore Machine Work?

80

n Nanopore is a nano-scale hole (<20nm).
n In nanopore sequencers, an ionic current passes through the nanopores
n When the DNA strand passes through the nanopore, the sequencer 

measures the the change in current
n This change is used to identify the bases in the strand with the help of 

different electrochemical structures of the different bases

graphene 
nanopore DNA 

strand

Figure is adapted from: https://phys.org/news/2013-12-gene-sequencing-future.html

Check Nanopore virtual tour:
https://nanoporetech.com/resource-centre/minion-video

https://phys.org/news/2013-12-gene-sequencing-future.html
https://nanoporetech.com/resource-centre/minion-video


Sequencing in Action

81https://store.nanoporetech.com/flow-cell-r9-4-1.html



Machine Learning for Nanopore Machine

82

Wan+
“Beyond sequencing: machine learning algorithms extract biology 
hidden in Nanopore signal data”
Trends in Genetics, October 25, 2021

https://www.cell.com/trends/genetics/pdf/S0168-9525(21)00257-2.pdf
https://www.cell.com/trends/genetics/pdf/S0168-9525(21)00257-2.pdf


Common Disadvantages!
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TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACG CCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT
ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

Regardless the sequencing machine, 
reads still lack information about their order and location

(which part of genome they are originated from) 



Solving the Puzzle

84
https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

Reads

Reference 
genome

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/


HTS Sequencing Output
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q 500-2M bp
q high error rate (~15%)

q 100-300 bp
q low error rate (~0.1%)

Large pieces of a puzzle 
long reads (ONT & PacBio)

Small pieces of a puzzle
short reads (Illumina)

Which sequencing technology is the best?

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/


HiFi Reads (PacBio)

86

Wenger+, "Accurate circular consensus long-read sequencing improves variant 
detection and assembly of a human genome", Nature Biotechnology, 2019

But still very 
expensive!

https://labs.wsu.edu/genomicscore/illumina-sequencing/
https://pacbio.gs.washington.edu/

Long: 10-20 kb
Accurate: 99.8%

https://www.nature.com/articles/s41587-019-0217-9
https://www.nature.com/articles/s41587-019-0217-9
https://labs.wsu.edu/genomicscore/illumina-sequencing/
https://pacbio.gs.washington.edu/


Changes in sequencing technologies 
can render some 

read mapping algorithms irrelevant

87



Read Mapping in 111 pages! 

88

Mohammed Alser, Jeremy Rotman, Dhrithi Deshpande, Kodi Taraszka, Huwenbo
Shi, Pelin Icer Baykal, Harry Taegyun Yang, Victor Xue, Sergey Knyazev, Benjamin D. 
Singer, Brunilda Balliu, David Koslicki, Pavel Skums, Alex Zelikovsky,
Can Alkan, Onur Mutlu, Serghei Mangul
"Technology dictates algorithms: Recent developments in read alignment" 
Genome Biology, 2021
[Source code]

In-depth analysis of 107 read mappers (1988-2020)

https://arxiv.org/abs/2003.00110
https://github.com/Mangul-Lab-USC/review_technology_dictates_algorithms


Looking forward, 
Will we be able to read 

the entire genome sequence?

89



Agenda for Today
n What is Genome Analysis?
n What is Intelligent Genome Analysis?

n How we Analyze Genome?
n What are the Barriers to Enabling Intelligent Analyses?

n Algorithmic & Hardware Acceleration 
q Seed Filtering Technique
q Pre-alignment Filtering Technique
q Read Alignment Acceleration

n Where is Genomic Analyses Going Next?

90



Significant barriers
to intelligent analyses

91



Significant Barriers to Intelligent Analyses

1. Performance gap between data generation and data 
processing

92



Lack of Specialized Compute Capability

93

Specialized Machine
for Sequencing

General-Purpose Machine
for Analysis

FAST                   SLOW



GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGA 

GAGTCAGAATTTGAC 
GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 
GAGTCAGAATTTGAC GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 
GAGTCAGAATTTGAC 

Analysis is Bottlenecked in Read Mapping!!

94

Human whole 
genomes 

Human 1
Illumina NovaSeq 6000 

48
at 30× coverage

in about 2 days

genome
32 CPU hours 

on a 48-core processor

71%

29%

Read Mapping Others

Goyal+, "Ultra-fast next generation human genome sequencing data processing using DRAGENTM bio-IT 
processor for precision medicine”, Open Journal of Genetics, 2017.

https://www.scirp.org/journal/paperinformation.aspx?paperid=74603
https://www.scirp.org/journal/paperinformation.aspx?paperid=74603


Significant Barriers to Intelligent Analyses

1. Performance gap between data generation and data 
processing

2. Expensive data movements

95



Data Movement Dominates Performance
n Data movement dominates performance and is a major

system energy bottleneck (accounting for 40%-62%)

96

MicroprocessorMain MemoryStorage (SSD/HDD)Sequencing 
Machine

✻ Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
★ Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” IISWC 2013 
☆ Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” IISWC 2014

Data Movement

Single memory request consumes >160x-800x more 
energy compared to performing an addition operation  



Data analysis 
is performed 

far away from the data
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Significant Barriers to Intelligent Analyses

1. Performance gap between data generation and data 
processing

2. Expensive data movements

3. Neglecting metadata
1. Types of sequencing data
2. Properties of intermediate data
3. Quality of data
4. Genome structure

98



Significant Barriers to Intelligent Analyses

1. Performance gap between data generation and data 
processing

2. Expensive data movements

3. Neglecting metadata

4. And many more barriers specific to each computational 
step …

99



Sequencing Technology:
• Illumina
• ONT
• PacBio (HiFi)

Species:
• E. Coli
• Human
• Yeast
• Zebra Fish
• Mice
• Fruit Fly

Read Corrector:
• HALC
• LSC
• Hercules
• LoRDEC
• LoRMA
• Proovread
• ColorMap

Reference 
Genomes

Species:
• E. Coli
• Human
• Yeast
• Zebra Fish
• Mice
• Fruit Fly

Read Mapper:
• BWA-MEM2
• Minimap2
• NGM-LR
• Bowtie2

De novo Assembler (Long Reads):
• Canu
• Miniasm (uses Minimap2)

De novo Assembler (Short Reads):
• ABySS
• SPAdes (small genomes)

Assembly Polisher:
• Apollo
• Racon
• Pilon
• Quiver (PB reads)
• Arrow (PB reads, Not 

published yet)
• NanoPolish (ONP 

reads)
Variant Caller:
• LuMPY
• VariationHunter
• GATK
• TaRDiS

Coverage:
• Low  2x - 30x
• Moderate 30x - 100x
• High >250x

Read Length:
• Short 100bp - 250bp
• Long 200bp – 2Mbp 

(>200bp)
• HiFi  10K-20Kbp

Read Set
Read 

Correction

Mapping

Assembly Polishing

Variant 
Calling

optional optional

Basecalling

• Freebayes
• DELLY
• Platypus
• SAMtools
• Genome STRiP

Taxonomy 
Profiling

• Kraken2
• Metalign
• MiCoP

Several Genome Analysis Pipelines

Sketching/
Indexing

Genome Analysis



Challenges in Genome Analysis

101

q Basecalling: Each sequencing technology provides different 
types of raw sequencing data.

q Error correction & quality control: Sequencing error rates 
vary from 0.1%-15%

q Read mapping: Regardless the sequencing machine, reads 
are still small randomized fragments of the original DNA 
sequence with unknown order and location.

q Variant calling: Small & complex genomic differences need 
to be maintained.

q Metagenomic profiling: The sample donor is unknown.



Technology Dictates Algorithm Complexity

102

Alser+, Going From Molecules to Genomic Variations to Scientific Discovery: 
Intelligent Algorithms and Architectures for Intelligent Genome Analysis, arXiv 2022

https://arxiv.org/abs/2205.07957
https://arxiv.org/abs/2205.07957


Computing System

103

Microarchitecture
ISA (Architecture)

Program/Language
Algorithm
Problem

Logic
Devices

Runtime System
(VM, OS, MM)

Electrons

Richard Feynman, "There's Plenty of Room at the Bottom: An Invitation 
to Enter a New Field of Physics”, a lecture given at Caltech, 1959.

Leiserson+, "There’s plenty of room at the Top: What will drive 
computer performance after Moore’s law?", Science, 2020

Data

Image source: https://science.sciencemag.org/content/368/6495/eaam9744

https://www.youtube.com/watch?v=4eRCygdW--c
https://www.youtube.com/watch?v=4eRCygdW--c
https://science.sciencemag.org/content/368/6495/eaam9744
https://science.sciencemag.org/content/368/6495/eaam9744
https://science.sciencemag.org/content/368/6495/eaam9744


Software & Hardware Optimizations

104

for i in xrange(4096):
for j in xrange(4096):
for k in xrange(4096):
C[i][j] += A[i][k] * 

B[k][j]

Implementation Running time (s) Absolute speedup
Python 25,552.48 1x

Java 2,372.68 11x
C 542.67 47x

Parallel loops 69.80 366x
Parallel divide and conquer 3.80 6,727x

plus vectorization 1.10 23,224x
plus AVX intrinsics 0.41 62,806x

Leiserson+, "There’s plenty of room at the Top: What will drive 
computer performance after Moore’s law?", Science, 2020

Multiplying Two 4096-by-4096 Matrices

https://science.sciencemag.org/content/368/6495/eaam9744
https://science.sciencemag.org/content/368/6495/eaam9744


FASTQ Parsing

105https://github.com/lh3/biofast

https://github.com/lh3/biofast


We need intelligent algorithms 
and intelligent architectures

that handle data well

106



Solving the Puzzle

108
https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

Reads

Reference 
genome

.FASTA file .FASTQ file

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/


Obtaining the Human Reference Genome
n GRCh38.p13
n Description: Genome Reference Consortium Human Build 38 

patch release 13 (GRCh38.p13)
n Organism name: Homo sapiens (human)
n Date: 2019/02/28
n 3,099,706,404 bases
n Compressed .fna file (964.9 MB)
n https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39
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>NC_000001.11 Homo sapiens chromosome 1, GRCh38.p13 Primary Assembly 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
….

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39


Obtaining .FASTQ Files
n https://www.ncbi.nlm.nih.gov/sra/ERR240727

112

https://www.ncbi.nlm.nih.gov/sra/ERR240727
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Let’s learn
how to map a read



Read Mapping: A Brute Force Algorithm

114

Very expensive! 
O(m2kn)

Reference

Read

m: read length
k: no. of reads
n: reference genome length



Matching Each Read with Reference Genome

119

.FASTA file:

.FASTQ file:



Step 1: Indexing the Reference Genome

120

?



Popular Indexing Technique 

121

Hashing is the most popular 
indexing technique for 

read mapping since 1988

Alser+, "Technology dictates algorithms: Recent developments in read alignment", 
Genome Biology, 2021

https://arxiv.org/abs/2003.00110


Step 1: Indexing the Reference Genome

122

Index the first 
seed at location 1

Seed=k-mer
(string of length k)



Genome Index Properties
n The index is built only once for each reference.

n Seeds can be overlapping, non-overlapping, spaced, 
adjacent, Syncmers, Strobemers, BLEND, non-adjacent, 
minimizers, compressed, …

123

Tool Version Index Size* Indexing 
Time

mrFAST 2.2.5 16.5 GB 20.00 min

minimap2 0.12.7 7.2 GB 3.33 min

BWA-MEM 0.7.17 4.7 GB 49.96 min
*Human genome = 3.2 GB



Performance of Human Genome Indexing 

124

Alser+, "Technology dictates algorithms: Recent developments in read alignment", 
Genome Biology, 2021

Mapper

https://arxiv.org/abs/2003.00110


Step 2: Query the Index Using Read Seeds
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Step 2: Query the Index Using Read Seeds
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Step 2: Query the Index Using Read Seeds

128

We can query the Hash table with 
substrings from reads to quickly find a list 

of possible mapping locations



Step 3: Sequence Alignment (Verification)
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Step 3: Sequence Alignment (Verification)
n Edit distance is defined as the minimum number of edits 

(i.e. insertions, deletions, or substitutions) needed to make 
the read exactly match the reference segment.

o - - r g a n i z a t i o n
o p e r - - - - - a t i o n

o - - r g a n i z a t i o n
o p e r - a - - - - t i o n

o r g a n i z a t i o n
t r - a n s l a t i o n

o r g a n - i z a t i o n
t r - a n s l - a t i o n

o r g a n i z - a t i o n
t r - a n - s l a t i o n

Ref
Read

Ref
Read

Ref
Read

Ref
Read

Ref
Read

organization x operation organization x translation

match
deletion
insertion
mismatch

131

Edit distance = 7

Edit distance = 4



Popular Algorithms for Sequence Alignment
Smith-Waterman remains 

the most popular algorithm 
since 1988

Hamming distance is 
the second most popular technique 

since 2008
132

Alser+, "Technology dictates algorithms: Recent developments in read alignment", 
Genome Biology, 2021

https://arxiv.org/abs/2003.00110


De Novo Genome Assembly

136

computationalgenomics.bioinformatics.ucla.edu/portf
olio/david-koslicki-the-cami-project-assessment-of-
computational-techniques-in-metagenomics/ 

Reference-free



Read Mapping Execution Time

137

ONT FASTQ size: 103MB (151 reads), Mean length: 356,403 bp, std: 173,168 bp, longest length: 817,917 bp

KSW2
45%

Seed 
Chaining

16%

Sorting 
Seeds
29%

Collect 
Matching 

Seeds
8%

Collect Minimizers
2%

>60%
of the read mapper’s 

execution time is spent 
in sequence alignment

minimap2



Computational Cost is Mathematically Proven

140https://arxiv.org/abs/1412.0348

https://arxiv.org/abs/1412.0348


Large Search Space for Mapping Location

of candidate locations 
have high dissimilarity 

with a given read

98% 

Cheng et al, BMC bioinformatics (2015)
Xin et al, BMC genomics (2013)

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

Short Read

... ...
Reference Genome

Read 
Alignment

        CC T AT AAT ACG
C
C
A
T
A
T
A
T
A
C
G

141



Agenda for Today
n What is Genome Analysis?
n What is Intelligent Genome Analysis?

n How we Analyze Genome?
n What are the Barriers to Enabling Intelligent Analyses?

n Algorithmic & Hardware Acceleration 
q Seed Filtering Technique
q Pre-alignment Filtering Technique
q Read Alignment Acceleration

n Where is Genomic Analyses Going Next?

142



Accelerating Read Mapping

143
Alser+, “Accelerating Genome Analysis: A Primer on an Ongoing Journey”, IEEE Micro, 2020.

https://arxiv.org/pdf/2008.00961.pdf


Our Contributions

GateKeeper [Bioinformatics’17]

MAGNET [AACBB’18]

Shouji [Bioinformatics’19]

SneakySnake [Bioinformatics’20]

GenASM [MICRO 2020]

SneakySnake [IEEE Micro’21]

Specialized Pre-alignment Filtering 
Accelerators (GPU, FPGA) 

GRIM-Filter [BMC Genomics’18]

GateKeeper-GPU [arXiv’21]

Near-memory/In-memory 
Pre-alignment Filtering

Near-memory Sequence Alignment

MicroprocessorMain MemoryStorage (SSD/HDD)Sequencing Machine

GenASM [MICRO 2020]

GenStore [ASPLOS 2022]

In-storage Sequence Alignment

SeGraM [ISCA 2022]



Ongoing Directions
n Seed Filtering Technique:

q Goal: Reducing the number of seed (k-mer) locations.
n Heuristic (limits the number of mapping locations for each seed).
n Supports exact matches only.

n Pre-alignment Filtering Technique:
q Goal: Reducing the number of invalid mappings (>E).

n Supports both exact and inexact matches.
n Provides some falsely-accepted mappings. 

n Read Alignment Acceleration:
q Goal: Performing read alignment at scale.

n Limits the numeric range of each cell in the DP table and hence 
supports limited scoring function.

n May not support backtracking step due to random memory accesses.
145



Ongoing Directions
n Seed Filtering Technique:

q Goal: Reducing the number of seed (k-mer) locations.
n Heuristic (limits the number of mapping locations for each seed).
n Supports exact matches only.

n Pre-alignment Filtering Technique:
q Goal: Reducing the number of invalid mappings (>E).

n Supports both exact and inexact matches.
n Provides some falsely-accepted mappings. 

n Read Alignment Acceleration:
q Goal: Performing read alignment at scale.

n Limits the numeric range of each cell in the DP table and hence 
supports limited scoring function.

n May not support backtracking step due to random memory accesses.
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FastHASH
n Goal: Reducing the number of seed (k-mer) locations.

q Heuristic (limits the number of mapping locations for each 
seed).

q Supports exact matches only.

147



Key Observations
n Observation 1 (Adjacent k-mers)

q Key insight: Adjacent k-mers in the read should also be 
adjacent in the reference genome

q Key idea: 1) sort the location list based on their number of 
locations and 2) search for adjacent locations in the k-mers’ 
location lists

148

AAAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTT read

Reference genomeValid mapping Invalid mapping



Key Observations
n Observation 1 (Adjacent k-mers)

q Key insight: Adjacent k-mers in the read should also be 
adjacent in the reference genome

q Key idea: 1) sort the location list based on their number of 
locations and 2) search for adjacent locations in the k-mers’ 
location lists

n Observation 2 (Cheap k-mers)
q Key insight: Some k-mers are cheaper to verify than others 

because they have shorter location lists (they occur less 
frequently in the reference genome)

q Key Idea: Read mapper can choose the cheapest k-mers and 
verify their locations

149



Cheap K-mer Selection
n occurrence threshold = 500

150

AAGCTCAATTTC CCTCCTTAATTT TCCTCTTAAGAA GGGTATGGCTAG AAGGTTGAGAGC CTTAGGCTTACC

read

314
1231
4414
9219
4 loc.

338

…

…

…

…

1K loc.

376

…

…

…

…

2K loc.

326

1451

2 loc.

350

1470

2 loc.

388

…

…

…

…

1K loc.

Previous work needs 
to verify:

3004 locations

FastHASH verifies only:

8 locations

Locations

Number of Locations

Cheapest 3 k-mers
Expensive 3 k-mers



FastHASH Conclusion
n Problem: Existing read mappers perform poorly in mapping 

billions of short reads to the reference genome, in the 
presence of errors

n Observation: Most of the verification calculations are 
unnecessary à filter them out

n Key Idea: To reduce the cost of unnecessary verification
q Select Cheap and Adjacent k-mers.

n Key Result: FastHASH obtains up to 19x speedup over the 
state-of-the-art mapper without losing valid mappings
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More on FastHASH

n Download source code and try for yourself
q Download link to FastHASH

152

http://mrfast.sourceforge.net/


Ongoing Directions
n Seed Filtering Technique:

q Goal: Reducing the number of seed (k-mer) locations.
n Heuristic (limits the number of mapping locations for each seed).
n Supports exact matches only.

n Pre-alignment Filtering Technique:
q Goal: Reducing the number of invalid mappings (>E).

n Supports both exact and inexact matches.
n Provides some falsely-accepted mappings. 

n Read Alignment Acceleration:
q Goal: Performing read alignment at scale.

n Limits the numeric range of each cell in the DP table and hence 
supports limited scoring function.

n May not support backtracking step due to random memory accesses.
153



Pre-alignment Filtering Technique

Sequence Alignment is expensive

Our goal is to reduce the need for dynamic 
programming algorithms

154



Key Idea

155

Genomic Strings

Similar 
Strings

Dissimilar 
Strings

Find number and location 
of differences?

Ignore them if the number 
of differences exceeds a 

threshold.

EXPE
NSIV

E!



1. Filter out most of incorrect mappings.
2. Preserve all correct mappings.
3. Do it quickly.

Ideal Filtering Algorithm 

156

Step 2

Query 
the 

Index

Step 3

Read 
Alignment



GateKeeper

157

Alser+, "GateKeeper: A New Hardware Architecture for Accelerating 
Pre-Alignment in DNA Short Read Mapping”, Bioinformatics, 2017.

https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf


GateKeeper
n Key observation:

q If two strings differ by E edits, then every bp match can be 
aligned in at most 2E shifts. 

n Key idea:
q Compute “Shifted Hamming Distance”: AND of 2E+1 Hamming 

vectors of two strings, to identify invalid mappings 
n Uses bit-parallel operations that nicely map to FPGA architectures

n Key result:
q GateKeeper is 90x-130x faster than SHD (Xin et al., 2015) and 

the Adjacency Filter (Xin et al., 2013), with only a 7% false 
positive rate

q The addition of GateKeeper to the mrFAST mapper (Alkan et 
al., 2009) results in 10x end-to-end speedup in read mapping
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Hamming Distance (∑⊕)

159

I S T A N B U L

I S T A N B U L

8 matches 0 mismatches3 matches 5 mismatches

To cancel the effect of a 
deletion, we need to shift 
in the right direction

Edit = 1 Deletion



I S T N B U L

Shifted Hamming Distance (Xin+ 2015) 
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7 matches 1 mismatches

XOR

XOR
AND

Edit = 1 Deletion

I S T N B U L0 0 0 1

1 1 1 0 0 0 0

1 1 1

0   0   0   1   0   0   0   0Count 
1’s

I S T A N B U L



GateKeeper Walkthrough

161

Generate 2E+1 
masks

Amend random zeros: 
101 à 111 &  1001 à 1111

AND all masks, 
ACCEPT iff number of ‘1’ ≤ Threshold

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA
AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001111111011110001110110101101111111110001000001111011010010101 
0000000000000011111111111110011111011111000000000000000000000000000000000000000000011000000000000000 
0000000000000010000000001011011100111111111111101111000111011010110111111111000100010011101101001010 
0000000000000010111111111110111011001101110111011000100100111111111111100101100110010110111011101111 
0000000000000111111111111110111110111111011101100010010011111111111110010110011000101011101110111110 
0000000000001000000000100111110011111111100100011010101001101011111111111110111001111111000111101100 
0000000000010111111111110111011001100011111111101011011111100110010111011111111011101111010111001000

Query : 
Reference :

Hamming Mask : 
1-Deletion Mask :
2-Deletion Mask :
3-Deletion Mask :

1-Insertion Mask :
2-Insertion Mask :
3-Insertion Mask :

0000000000000000000000000010000000000001111111111110001111111101111111111110001000001111111111111111 
0000000000000011111111111111111111111111000000000000000000000000000000000000000000011000000000000000 
0000000000000010000000001111111111111111111111111111000111111111111111111111000100011111111111111110 
0000000000000011111111111111111111111111111111111000111111111111111111111111111111111111111111111111 
0000000000000111111111111111111111111111111111100011111111111111111111111111111000111111111111111110 
0000000000001000000000111111111111111111111100011111111111111111111111111111111111111111000111111100 
0000000000011111111111111111111111100011111111111111111111111111111111111111111111111111111111111000

--- Masks after amendment ---

Hamming Mask : 
1-Deletion Mask :
2-Deletion Mask :
3-Deletion Mask :

1-Insertion Mask :
2-Insertion Mask :
3-Insertion Mask :

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG
|||||||||||||||||||||||||| |||||||||||| |||||||||||||||||||||||||||||||||||||||||||::|||||||||||||||
AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001000000000000000000000000000000000000000000001000000000000000AND Mask :

 Alignment :
Needleman-Wunsch

Our goal to track the diagonally consecutive matches in the 
neighborhood map.



Alignment Matrix vs. Neighborhood Map
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A C T T A G C A C T

0 -1 -2

A -1 -1 -1 -2

C -2 -2 -2 -1 -2

T -2 -3 -2 -1 -2

A -3 -3 -2 -1 -2

G -4 -3 -2 -1 -2

A -4 -3 -2 -2 -2

A -4 -3 -2 -3 -3

C -4 -3 -2 -3 -4

T -4 -3 -2 -3

T -4 -3 -2

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

A C T T A G C A C T

A

C

T

A

G

A

A

C

T

T

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

|dp[i][j-1] -1 // Inser.
dp[i][j]=max|dp[i-1][j]  -1 // Del.

|dp[i-1][j-1]-1 // Subs.
|dp[i-1][j-1]+0 // match.

dp[i][j]=|0 if X[i]=Y[j]
|1 if X[i]≠Y[j]

No data dependencies!Each cell depends on three 
pre-computed cells!

Needleman-Wunsch Neighborhood Map

where    1≤ i ≤ m 
i-E ≤ j ≤ i+E

A C T T A G C A C T

A 1 1 0

C 0 1 1 1

T 1 0 1 0 1

A 1 0 1 0 0

G 1 0 1 1 0

A 1 0 0 1 0

A 1 1 0 1 1

C 0 1 0 1 1

T 1 1 0 1

T 1 1 0

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

1 1 0

Our goal to track the diagonally consecutive matches in the 
neighborhood map.



Alignment Matrix vs. Neighborhood Map
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A C T T A G C A C T

0 -1 -2

A -1 -1 -1 -2

C -2 -2 -2 -1 -2

T -2 -3 -2 -1 -2

A -3 -3 -2 -1 -2

G -4 -3 -2 -1 -2

A -4 -3 -2 -2 -2

A -4 -3 -2 -3 -3

C -4 -3 -2 -3 -4

T -4 -3 -2 -3

T -4 -3 -2

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

A C T T A G C A C T

A

C

T

A

G

A

A

C

T

T

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

|dp[i][j-1] -1 // Inser.
dp[i][j]=max|dp[i-1][j]  -1 // Del.

|dp[i-1][j-1]-1 // Subs.
|dp[i-1][j-1]+0 // match.

dp[i][j]=|0 if X[i]=Y[j]
|1 if X[i]≠Y[j]

No data dependencies!Each cell depends on three 
pre-computed cells!

Needleman-Wunsch Neighborhood Map

where    1≤ i ≤ m 
i-E ≤ j ≤ i+E

A C T T A G C A C T

A 1 1 0

C 0 1 1 1

T 1 0 1 0 1

A 1 0 1 0 0

G 1 0 1 1 0

A 1 0 0 1 0

A 1 1 0 1 1

C 0 1 0 1 1

T 1 1 0 1

T 1 1 0

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

1 1 0

Our goal to track the diagonally consecutive matches in the 
neighborhood map.

Independent vectors can be processed in parallel using 
hardware technologies
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A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

C T A T A A T A C G
C

C
A

T
A
T
A
T
A
C
G

High throughput DNA 
sequencing (HTS) technologies 

Read Pre-Alignment Filtering 
Fast & Low False Positive Rate1 2

Read Alignment
Slow & Zero False Positives3

Billions of Short Reads

Hardware Acceleratorx1012
mappings

x103
mappings

Low Speed & High Accuracy
Medium Speed, Medium Accuracy

High Speed, Low Accuracy

Our Solution: GateKeeper

Alignment 
Filter

st1
FPGA-based 

Alignment Filter.



AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA
AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001111111011110001110110101101111111110001000001111011010010101 
0000000000000011111111111110011111011111000000000000000000000000000000000000000000011000000000000000 
0000000000000010000000001011011100111111111111101111000111011010110111111111000100010011101101001010 
0000000000000010111111111110111011001101110111011000100100111111111111100101100110010110111011101111 
0000000000000111111111111110111110111111011101100010010011111111111110010110011000101011101110111110 
0000000000001000000000100111110011111111100100011010101001101011111111111110111001111111000111101100 
0000000000010111111111110111011001100011111111101011011111100110010111011111111011101111010111001000

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG
|||||||||||||||||||||||||| |||||||||||| |||||||||||||||||||||||||||||||||||||||||||::|||||||||||||||
AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001111111111110001111111101111111111110001000001111111111111111 
0000000000000011111111111111111111111111000000000000000000000000000000000000000000011000000000000000 
0000000000000010000000001111111111111111111111111111000111111111111111111111000100011111111111111110 
0000000000000011111111111111111111111111111111111000111111111111111111111111111111111111111111111111 
0000000000000111111111111111111111111111111111100011111111111111111111111111111000111111111111111110 
0000000000001000000000111111111111111111111100011111111111111111111111111111111111111111000111111100 
0000000000011111111111111111111111100011111111111111111111111111111111111111111111111111111111111000

0000000000000000000000000010000000000001000000000000000000000000000000000000000000001000000000000000

--- Masks after amendment ---

Query : 
Reference :

Hamming Mask : 
1-Deletion Mask :
2-Deletion Mask :
3-Deletion Mask :

1-Insertion Mask :
2-Insertion Mask :
3-Insertion Mask :

Hamming Mask : 
1-Deletion Mask :
2-Deletion Mask :
3-Deletion Mask :

1-Insertion Mask :
2-Insertion Mask :
3-Insertion Mask :

AND Mask :

 Alignment :
Needleman-Wunsch

GateKeeper Walkthrough (cont’d)
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Generate 2E+1 
masks

Amend random zeros: 
101 à 111 &  1001 à 1111

AND all masks, 
ACCEPT iff number of ‘1’ ≤ Threshold

• (2E+1)*(ReadLength) 5-input LUT. 

0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 10 101 10 0 11 1 1 000 1 0 0 1 0
Hamming mask

0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 11 111 11 1 1 11 00 0 11 1 1 0
Hamming mask after amending

. . . . . . . . . .

5-input
LUT

• E right-shift registers (length=ReadLength)
• E left-shift registers (length=ReadLength)
• (2E+1) * (ReadLength) 2-XOR operations.

• (2E)*(ReadLength) 2-AND 
operations.

• (ReadLength/4) 5-input LUT.
• 𝑙𝑜𝑔!ReadLength-bit counter.

1001X
X1001



Virtex-7 FPGA Layout 
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The LUTs in 7 series 
FPGAs can be 
configured as either a 
6-input LUT with one 
output, or as two 5-
input LUTs with 
separate outputs

“7 Series FPGAs Configurable Logic Block”, User Guide, Xilinx 2016

https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf


GateKeeper Accelerator Architecture
n Maximum data throughput =~13.3 billion bases/sec
n Can examine 8 (300 bp) or 16 (100 bp) mappings concurrently at 250 MHz

n Occupies 50% (100 bp) to 91% (300 bp) of the FPGA slice LUTs and registers
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Preprocessing Host (CPU)

input reads 
(.fastq)

reference 
genome (.fasta)

Read 
Encoder

read pairs 
(mrFAST 
output)

GateKeeper 
Processing 

Core #1

GateKeeper 
Processing 

Core #N. . .  .
. . .  .

Read Controller

Mapping ControllerFIFO

FIFO FIFO

FIFO

read#1 read#N

map.#Nmap.#1

map.#Nmap.#1 …

Accepted Alignments
(correct & false positives)

10...001

Alignment Filtering (FPGA) Alignment Verification 
(CPU/FPGA)GateKeeper

PCIe

PCIe

Input stream 
of binary pairs 

GateKeeper

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

C T A T A A T A C G
C

C
A

T
A
T
A
T
A
C
G

A



FPGA Chip Layout
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42
.5

m
m

42.5mm

GateKeeper: 17.6%, PCIe Controller, RIFFA, and IO: 5%

GateKeeper 
Logic Cells

PCIe 
Controller, 

RIFFA, and IO

300 bp

E=15



GateKeeper: Speed & Accuracy Results
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90x-130x faster filter 
than SHD (Xin et al., 2015) and the Adjacency Filter (Xin et al., 2013)

4x lower false accept rate
than the Adjacency Filter (Xin et al., 2013)

10x speedup in read mapping
with the addition of GateKeeper to the mrFAST mapper (Alkan et al., 2009)

Freely available online 
github.com/BilkentCompGen/GateKeeper

https://github.com/BilkentCompGen/GateKeeper


More on SHD (SIMD Implementation)
n Download and test for yourself 
n https://github.com/CMU-SAFARI/Shifted-Hamming-Distance
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https://github.com/CMU-SAFARI/Shifted-Hamming-Distance


More on GateKeeper
n Download and test for yourself 

https://github.com/BilkentCompGen/GateKeeper
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Alser+, "GateKeeper: A New Hardware Architecture for Accelerating Pre-Alignment in DNA 
Short Read Mapping”, Bioinformatics, 2017.

https://github.com/BilkentCompGen/GateKeeper
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
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Can we do better? Scalability?



Shouji (障子)

182

Alser+, “Shouji: a fast and efficient pre-alignment filter for sequence alignment”,
Bioinformatics 2019, 
https://doi.org/10.1093/bioinformatics/btz234

https://doi.org/10.1093/bioinformatics/btz234
https://doi.org/10.1093/bioinformatics/btz234


Shouji

183

n Key observation:
q Correct alignment always includes long identical subsequences. 
q Processing the entire mapping at once is ineffective for hardware 

design.
n Key idea:

q Use overlapping sliding window approach to quickly and accurately 
find all long segments of consecutive zeros.

n Key result:
q Shouji on FPGA is up to three orders of magnitude faster than its CPU 

implementation.
q Shouji accelerates best-performing CPU read aligner Edlib 

(Bioinformatics 2017) by up to 18.8x using 16 filtering units that work 
in parallel.

q Shouji is 2.4x to 467x more accurate than GateKeeper (Bioinformatics 
2017) and SHD (Bioinformatics 2015).
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j 1 2 3 4 5 6 7 8 9 10 11 12

i G G T G C A G A G C T C

1 G 0 0 1 0

2 G 0 0 1 0 1

3 T 1 1 0 1 1 1

4 G 0 0 1 0 1 1 0

5 A 1 1 1 1 0 1 0

6 G 1 0 1 1 0 1 0

7 A 1 1 0 1 0 1 1

8 G 1 1 0 1 0 1 1

9 T 1 1 1 1 1 0 1

10 T 1 1 1 1 0 1

11 G 1 0 1 1 1

12 T 1 1 0 1

Shouji Walkthrough

1
1
1
4
1
2
1

search window # 1 search window # 5

0
0

0
0

Building the 
Neighborhood Map

Storing it @ Shouji Bit-vector

1
1

3
1

0
2

0
0

0
1

0

0 0 0 0 1 0 0 0 0 1 0 1

Finding all common 
subsequences 
(diagonal segments of 
consecutive zeros) 
shared between two 
given sequences.

ACCEPT iff number of ‘1’ ≤ Threshold
Shouji: a fast and efficient pre-alignment filter for sequence alignment, Bioinformatics 2019, 
https://doi.org/10.1093/bioinformatics/btz234

https://doi.org/10.1093/bioinformatics/btz234
https://doi.org/10.1093/bioinformatics/btz234
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j 1 2 3 4 5 6 7 8 9 10 11 12

i G G T G C A G A G C T C

1 G 0 0 1 0

2 G 0 0 1 0 1

3 T 1 1 0 1 1 1

4 G 0 0 1 0 1 1 0

5 A 1 1 1 1 0 1 0

6 G 1 0 1 1 0 1 0

7 A 1 1 0 1 0 1 1

8 G 1 1 0 1 0 1 1

9 T 1 1 1 1 1 0 1

10 T 1 1 1 1 0 1

11 G 1 0 1 1 1

12 T 1 1 0 1

Shouji Walkthrough

search window # 1 search window # 5

Building the 
Neighborhood Map

Storing it @ Shouji Bit-vector 0 0 0 0 1 0 0 0 0 1 0 1

Finding all common 
subsequences 
(diagonal segments of 
consecutive zeros) 
shared between two 
given sequences.

ACCEPT iff number of ‘1’ ≤ Threshold
Shouji: a fast and efficient pre-alignment filter for sequence alignment, Bioinformatics 2019, 
https://doi.org/10.1093/bioinformatics/btz234

https://doi.org/10.1093/bioinformatics/btz234
https://doi.org/10.1093/bioinformatics/btz234


Sliding Window Size
n The reason behind the selection of the window size is due 

to the minimal possible length of the identical subsequence 
that is a single match (e.g., such as `101').
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Hardware Implementation
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m

m

m

Text . . . . . .
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SLIDER 
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m search windows for processing 
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m
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≥ m-E?

1: similar
0: dissimilar

Step 1 Step 2 Step 3

0000
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0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

• Counting is performed concurrently for all bit-vectors and all 
sliding windows in a single clock cycle using multiple 4-input 
LUTs.



More on Shouji
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Alser+, “Shouji: a fast and efficient pre-alignment filter for sequence alignment”,
Bioinformatics 2019, 
https://doi.org/10.1093/bioinformatics/btz234

Download and test for yourself 
https://github.com/CMU-SAFARI/Shouji

https://doi.org/10.1093/bioinformatics/btz234
https://doi.org/10.1093/bioinformatics/btz234
https://github.com/CMU-SAFARI/Shouji


Specialized Hardware for Pre-alignment Filtering

189

Mohammed Alser, Taha Shahroodi, Juan-Gomez Luna, Can Alkan, and Onur Mutlu,
"SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment 
Filter for CPUs, GPUs, and FPGAs"
Bioinformatics, 2020.
[Source Code]
[Online link at Bioinformatics Journal]

https://people.inf.ethz.ch/omutlu/pub/SneakySnake_UniversalGenomePrealignmentFilter_bioinformatics20.pdf
https://people.inf.ethz.ch/omutlu/pub/SneakySnake_UniversalGenomePrealignmentFilter_bioinformatics20.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/CMU-SAFARI/SneakySnake
https://doi.org/10.1093/bioinformatics/btaa1015


SneakySnake

190

n Key observation:
q Correct alignment is a sequence of non-overlapping long matches. 

Dot plot, dot matrix 
(Lipman and Pearson, 1985)

Fin
d s

ho
rte

st 
pa

th!



SneakySnake
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n Key observation:
q Correct alignment is a sequence of non-overlapping long matches 

n Key idea:
q Approximate edit distance calculation is similar to Single Net 

Routing problem in VLSI chip
VLSI chip layout



SneakySnake Walkthrough
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Building Neighborhood Map Finding the Optimal Routing Path Examining the Snake Survival

E = 3



SneakySnake Walkthrough
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Building Neighborhood Map Finding the Optimal Routing Path Examining the Snake Survival

E = 3

EN
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CE

EX
IT



SneakySnake Walkthrough
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Building Neighborhood Map Finding the Optimal Routing Path Examining the Snake Survival

3

EX
IT

210
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SneakySnake Walkthrough
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Building Neighborhood Map Finding the Routing Travel Path Examining the Snake Survival

This is what you actually need to build
and it can be done on-the-fly!

EN
TR

AN
CE

EX
IT

3



FPGA Resource Analysis

n FPGA resource usage for a single filtering unit of GateKeeper, 
Shouji, and Snake-on-Chip for a sequence length of 100 and 
under different edit distance thresholds (E).

196



Key Results of SneakySnake

199

q SneakySnake is up to four orders of magnitude more accurate 
than Shouji (Bioinformatics’19) and GateKeeper (Bioinformatics’17)

q Using short reads, SneakySnake accelerates Edlib
(Bioinformatics’17) and Parasail (BMC Bioinformatics’16) by
n up to 37.7× and 43.9× (>12× on average), on CPUs 
n up to 413× and 689× (>400× on average) with FPGA/GPU 

acceleration

q Using long reads, SneakySnake accelerates Parasail and KSW2 by 
140.1× and 17.1× on average, respectively, on CPUs



Data Movement Dominates Performance
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MicroprocessorMain MemoryStorage (SSD/HDD)Sequencing 
Machine

n Data movement dominates performance and is a major
system energy bottleneck (accounting for 40%-62%)

✻ Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
★ Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” IISWC 2013 
☆ Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” IISWC 2014

Data Movement

Single memory request consumes >160x-800x more 
energy compared to performing an addition operation  



Read Mapping & Filtering in Memory

We need to design 
mapping & filtering algorithms 
that fit processing-in-memory

201



Processing Using Memory

202https://www.youtube.com/watch?v=HNd4skQrt6I

https://www.youtube.com/watch?v=HNd4skQrt6I


Processing Using Memory II

203https://www.youtube.com/watch?v=k56x2qcaXWY

https://www.youtube.com/watch?v=k56x2qcaXWY


Processing Near Memory

204https://www.youtube.com/watch?v=kpgLmX9sdcI

https://www.youtube.com/watch?v=kpgLmX9sdcI


Using Real PIM System

205https://www.youtube.com/watch?v=TuVw_SKaTCo

https://www.youtube.com/watch?v=TuVw_SKaTCo


Near-memory Pre-alignment Filtering

206

Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, 
Juan Gomez-Luna, Henk Corporaal, Onur Mutlu,
“FPGA-Based Near-Memory Acceleration of Modern Data-Intensive 
Applications“
IEEE Micro, 2021.
[Source Code]

https://arxiv.org/pdf/2106.06433.pdf
https://arxiv.org/pdf/2106.06433.pdf
https://github.com/CMU-SAFARI/SneakySnake/tree/master/SneakySnake-HLS-HBM


Near-memory SneakySnake
n Problem: Read Mapping is heavily bottlenecked by data 

movement from main memory

n Solution: Perform read mapping near where data resides (i.e., 
near-memory)

n We carefully redesigned the accelerator logic of SneakySnake 
to exploit near-memory computation capability on modern 
FPGA boards with high-bandwidth memory

207



Heterogeneous System: CPU+FPGA

208

POWER9 AC922

HBM-based AD9H7 board 

CAPI2

Source: AlphaData

Source: IBM

Source: AlphaData

DDR4-based AD9V3 board

We evaluate two POWER9+FPGA systems:
1. HBM-based AD9H7 board: Xilinx Virtex Ultrascale+™ XCVU37P-2
2. DDR4-based AD9V3 board: Xilinx Virtex Ultrascale+™ XCVU3P-2

FPGA + HBM on the same package substrate



Key Results of Near-memory SneakySnake

209

Near-memory pre-alignment filtering improves performance
and energy efficiency by 27.4× and 133×, respectively, 
over a 16-core (64 hardware threads) IBM POWER9 CPU



More on SneakySnake [Bioinformatics 2020]
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Mohammed Alser, Taha Shahroodi, Juan-Gomez Luna, Can Alkan, and Onur Mutlu,
"SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment 
Filter for CPUs, GPUs, and FPGAs"
Bioinformatics, 2020.
[Source Code]
[Online link at Bioinformatics Journal]

https://people.inf.ethz.ch/omutlu/pub/SneakySnake_UniversalGenomePrealignmentFilter_bioinformatics20.pdf
https://people.inf.ethz.ch/omutlu/pub/SneakySnake_UniversalGenomePrealignmentFilter_bioinformatics20.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/CMU-SAFARI/SneakySnake
https://doi.org/10.1093/bioinformatics/btaa1015


GRIM-Filter
n Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, 

Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using 
Processing-in-Memory Technologies"
to appear in BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), 
Yokohama, Japan, January 2018.
arxiv.org Version (pdf)

211

http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf


GRIM-Filter
n Key observation: FPGA and GPU accelerators are Heavily 

bottlenecked by Data Movement.

n Key idea: exploiting the high memory bandwidth and the logic layer of 
3D-stacked memory to perform highly-parallel filtering in the DRAM 
chip itself.

n Key results: 
q We propose an algorithm called GRIM-Filter
q GRIM-Filter with processing-in-memory is 1.8x-3.7x (2.1x on 

average) faster than FastHASH filter (BMC Genomics’13) across real 
data sets.

q GRIM-Filter has 5.6x-6.4x (6.0x on average) lower falsely accepted 
pairs than FastHASH filter (BMC Genomics’13) across real data sets.
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GRIM-Filter in 3D-Stacked DRAM

n Each DRAM layer is organized as an array of banks
q A bank is an array of cells with a row buffer to transfer data

n The layout of bitvectors in a bank enables filtering many 
bins in parallel
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GRIM-Filter: Bitvectors
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AAAAC
exists in 
bin 1

CCCCT
doesn’t 
exist in 
bin 1

q Represent each bin with a bitvector
that holds the occurrence of all 
permutations of a small string (token) 
in the bin

q To account for matches that straddle 
bins, we employ overlapping bins
n A read will now always completely fall 

within a single bin



GRIM-Filter: Bitvectors

Storing all bitvectors
requires 𝟒𝒏 ∗ 𝒕 bits
in memory, 
where 
t = number of bins 
&
n = token length.

For bin size ~200, 
and n = 5, 
memory footprint
~3.8 GB 
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TTGGAGAACTAACTTACTTGCTTGG
INPUT: Read Sequence r

GAACTTGGAGTCTA     CGAG... Read bitvector for bin_num(x)

...

1

+ ≥ Threshold?

Send to
Read Mapper
for Sequence

Alignment

tokens
Discard

NO YES

Sum

GRIM-Filter: Checking a Bin
How GRIM-Filter determines whether to discard potential 
match locations in a given bin prior to alignment

3

2

4 5

1
0
1

0
1
1 

1
0
0

...

...

Get tokens

Match tokens to bitvector

Compare
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More on GRIM-Filter

220https://www.youtube.com/watch?v=j5-I84iNVd8

https://www.youtube.com/watch?v=j5-I84iNVd8


More on GRIM-Filter
n Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, 

Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using 
Processing-in-Memory Technologies"
to appear in BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), 
Yokohama, Japan, January 2018.
arxiv.org Version (pdf)
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http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf


GenCache

222

Nag, Anirban, et al. "GenCache: Leveraging In-Cache Operators for Efficient 
Sequence Alignment." Proceedings of the 52nd Annual IEEE/ACM International 
Symposium on Microarchitecture (MICRO 52) , ACM, 2019.

https://www.cs.utah.edu/~rajeev/pubs/micro19a.pdf
https://www.cs.utah.edu/~rajeev/pubs/micro19a.pdf


GenCache
n Key observation: State-of-the-art alignment accelerators are still 

bottlenecked by memory.

n Key ideas: 
q Performing in-cache alignment + pre-alignment filtering by enabling 

processing-in-cache using previous proposal, ComputeCache
(HPCA’17).

q Using different Pre-alignment filters depending on the selected edit 
distance threshold.

n Results: 
q GenCache on CPU is 1.36x faster than GenAx (ISCA 2018). 

GenCache in cache is 5.26x faster than GenAx.
q GenCache chip has 16.4% higher area, 34.7% higher peak power, 

and 15% higher average power than GenAx.
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GenCache’s Four Phases
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Throughput Results
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Ongoing Directions
n Seed Filtering Technique:

q Goal: Reducing the number of seed (k-mer) locations.
n Heuristic (limits the number of mapping locations for each seed).
n Supports exact matches only.

n Pre-alignment Filtering Technique:
q Goal: Reducing the number of invalid mappings (>E).

n Supports both exact and inexact matches.
n Provides some falsely-accepted mappings. 

n Read Alignment Acceleration:
q Goal: Performing read alignment at scale.

n Limits the numeric range of each cell in the DP table and hence 
supports limited scoring function.

n May not support backtracking step due to random memory accesses.
228



GenASM Framework [MICRO 2020]
n Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. 

Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, 
Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching 
Acceleration Framework for Genome Sequence Analysis"
Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual, 
October 2020.
[Lightning Talk Video (1.5 minutes)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (18 minutes)]
[Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pdf


Near-memory GenASM Framework

230

n Our goal: Accelerate approximate string matching (ASM) by 
designing a fast and flexible framework, which can accelerate 
multiple steps of genome sequence analysis.

n Key ideas: Exploit the high memory bandwidth and the logic layer of 
3D-stacked memory to perform highly-parallel ASM in the DRAM chip 
itself.

n Modify and extend Bitap1,2, ASM algorithm with fast and simple 
bitwise operations, such that it now:
q Supports long reads 
q Supports traceback
q Is highly parallelizable

n Co-design of our modified scalable and memory-efficient algorithms 
with low-power and area-efficient hardware accelerators

[1] R. A. Baeza-Yates and G. H. Gonnet. "A New Approach to Text Searching." CACM, 1992.
[2] S. Wu and U. Manber. "Fast Text Searching: Allowing Errors." CACM, 1992.



Key Results of the GenASM Framework

(1) Read Alignment
n 116× speedup, 37× less power than Minimap2 (state-of-the-art SW)

n 111× speedup, 33× less power than BWA-MEM (state-of-the-art SW)

n 3.9× better throughput, 2.7× less power than Darwin (state-of-the-art HW)

n 1.9× better throughput, 82% less logic power than GenAx (state-of-the-art HW)

(2) Pre-Alignment Filtering
n 3.7× speedup, 1.7× less power than Shouji (state-of-the-art HW)

(3) Edit Distance Calculation
n 22–12501× speedup, 548–582× less power than Edlib (state-of-the-art SW)

n 9.3–400× speedup, 67× less power than ASAP (state-of-the-art HW)
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More on GenASM

232https://www.youtube.com/watch?v=XoLpzmN-Pas

https://www.youtube.com/watch?v=XoLpzmN-Pas


GenStore (ASPLOS 2022)

233

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid
Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, Onur Mutlu
"GenStore: A High-Performance and Energy-Efficient In-Storage Computing System 
for Genome Sequence Analysis", 
ASPLOS 2022

https://arxiv.org/abs/2202.10400
https://arxiv.org/abs/2202.10400


Key Ideas of GenStore (ASPLOS 2022)
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MicroprocessorMain MemoryStorage (SSD/HDD)Sequencing Machine

GenStore-EM: 2.1-6.1× speedup & 3.92x energy saving compared to minimap2.
GenStore-NM: 1.4-33.6x speedup & 27.17x energy saving compared to minimap2.

GenStore-EM (exactly-matching reads filter): In some cases, a large fraction of reads 
exactly match to subsequences of the reference genome.

GenStore-NM (non-matching reads filter): In some cases, a large fraction of reads do 
not match to subsequences of the reference genome.



GenPIP (MICRO 2022)
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Haiyu Mao, Mohammed Alser, Mohammad Sadrosadati, Can Firtina, Akanksha 
Baranwal, Damla Senol Cali, Aditya Manglik, Nour Almadhoun Alserr, Onur Mutlu
“GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration of 
Basecalling and Read Mapping”
Proceedings of the 55rd International Symposium on Microarchitecture (MICRO), 
2022.

https://arxiv.org/abs/2209.08600
https://www.microarch.org/micro55/


Innovations Require Change
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GenPIP provides 41.6x and 8.4x speedup and 32.8x and 20.8x 
energy reduction compared to CPU and GPU state-of-the-art 

solutions.
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n CP processes reads at the granularity of a chunk instead of the complete 
read sequence, increasing parallelism and resource utilization by 
overlapping the execution of different steps.



GateKeeper [Alser+, Bioinformatics 2017]

237

Mohammed Alser, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur Mutlu, and Can Alkan
"GateKeeper: A New Hardware Architecture for Accelerating Pre-Alignment in 
DNA Short Read Mapping"
Bioinformatics, [published online, May 31], 2017.
[Source Code]
[Online link at Bioinformatics Journal]

https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/BilkentCompGen/GateKeeper
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx342


MAGNET

238

Mohammed Alser, Onur Mutlu, and Can Alkan. 
"MAGNET: understanding and improving the accuracy of genome pre-alignment 
filtering"
IPSI Transaction (2017).
[Source code]

https://arxiv.org/pdf/1707.01631.pdf
https://arxiv.org/pdf/1707.01631.pdf
https://github.com/BilkentCompGen/MAGNET


Shouji (障子) [Alser+, Bioinformatics 2019]

239

Mohammed Alser, Hasan Hassan, Akash Kumar, Onur Mutlu, and Can Alkan,
"Shouji: A Fast and Efficient Pre-Alignment Filter for Sequence Alignment"
Bioinformatics, [published online, March 28], 2019.
[Source Code]
[Online link at Bioinformatics Journal]

https://people.inf.ethz.ch/omutlu/pub/shouji-genome-prealignment-filter_bionformatics19.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/CMU-SAFARI/Shouji
https://doi.org/10.1093/bioinformatics/btz234


In-Memory Sequence Analysis GRIM-Filter
n Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, 

Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using 
Processing-in-Memory Technologies"
to appear in BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), 
Yokohama, Japan, January 2018.
arxiv.org Version (pdf)
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http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf


Near-memory Pre-alignment Filtering

241

Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, 
Juan Gomez-Luna, Henk Corporaal, Onur Mutlu,
“FPGA-Based Near-Memory Acceleration of Modern Data-Intensive 
Applications“
IEEE Micro, 2021.
[Source Code]

https://arxiv.org/pdf/2106.06433.pdf
https://arxiv.org/pdf/2106.06433.pdf
https://github.com/CMU-SAFARI/SneakySnake/tree/master/SneakySnake-HLS-HBM


GenASM Framework [MICRO 2020]
n Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. 

Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, 
Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching 
Acceleration Framework for Genome Sequence Analysis"
Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual, 
October 2020.
[Lightning Talk Video (1.5 minutes)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (18 minutes)]
[Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pdf


SeGraM (ISCA 2022)

243

Damla Senol Cali, Konstantinos Kanellopoulos, Joel Lindegger, Zülal Bingöl, Gurpreet 
S. Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie Kim, Nika Mansouri 
Ghiasi, Gagandeep Singh, Juan Gómez-Luna, Nour Almadhoun Alserr,
Mohammed Alser, Sreenivas Subramoney, Can Alkan, Saugata Ghose, Onur Mutlu
“SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and 
Sequence-to-Sequence Mapping”
ISCA 2022

https://arxiv.org/abs/2205.05883
https://arxiv.org/abs/2205.05883


Demeter (HD Food Microbiome Profiling)

244

Taha Shahroodi, Mahdi Zahedi, Can Firtina, Mohammed Alser, Stephan Wong,
Onur Mutlu, Said Hamdioui
“Demeter: A Fast and Energy-Efficient Food Profiler using Hyperdimensional
Computing in Memory”
IEEE Access, 2022

https://arxiv.org/pdf/2206.01932.pdf
https://arxiv.org/pdf/2206.01932.pdf


AIM (PIM Sequence Alignment Framework)

245

Safaa Diab, Amir Nassereldine, Mohammed Alser, Juan Gómez-Luna, 
Onur Mutlu, Izzat El Hajj 
“A Framework for High-throughput Sequence Alignment using Real Processing-in-
Memory Systems“
arXiv, 2022
[Source code]

https://arxiv.org/abs/2208.01243
https://arxiv.org/abs/2208.01243
https://github.com/safaad/aim


Our Contributions

GateKeeper [Bioinformatics’17]

MAGNET [AACBB’18]

Shouji [Bioinformatics’19]

SneakySnake [Bioinformatics’20]

GenASM [MICRO 2020]

SneakySnake [IEEE Micro’21]

Specialized Pre-alignment Filtering 
Accelerators (GPU, FPGA) 

GRIM-Filter [BMC Genomics’18]

GateKeeper-GPU [arXiv’21]

Near-memory/In-memory 
Pre-alignment Filtering

Near-memory Sequence Alignment

MicroprocessorMain MemoryStorage (SSD/HDD)Sequencing Machine

GenASM [MICRO 2020]

GenStore [ASPLOS 2022]

In-storage Sequence Alignment

SeGraM [ISCA 2022]



Conclusion on Ongoing Directions

n Read alignment can be substantially accelerated using 
computationally inexpensive and accurate pre-alignment 
filtering algorithms designed for specialized hardware.

n All the three directions are used by mappers today, but 
filtering has replaced alignment as the bottleneck.

n Pre-alignment filtering does not sacrifice any of the aligner 
capabilities, as it does not modify or replace the alignment 
step.
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What else can be done?
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https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

Reads

Reference 
genome

.FASTA file .FASTQ file

What if we got a new version of 
the reference genome?

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/


Revisiting the Puzzle

259
https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/


Reference Genome Bias

260Sherman+, “Assembly of a pan-genome from deep sequencing of 910 humans of 
African descent” Nature genetics, 2019.

“African pan-genome contains ~10% more DNA 
bases than the current human reference genome”

https://www.nature.com/articles/s41588-018-0273-y
https://www.nature.com/articles/s41588-018-0273-y


Time to Change the Reference Genome

261

“Switching to a consensus reference would offer important 
advantages over the continued use of the current reference with 

few disadvantages”
Ballouz+, "Is it time to change the reference genome?", Genome Biology, 2019

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1774-4


AirLift

262

Jeremie S. Kim, Can Firtina, Meryem Banu Cavlak, Damla Senol Cali, 
Mohammed Alser, Nastaran Hajinazar, Can Alkan, Onur Mutlu
“AirLift: A Fast and Comprehensive Technique for Remapping Alignments between 
Reference Genomes”
arXiv 2022
GitHub: https://github.com/CMU-SAFARI/AirLift

https://arxiv.org/abs/1912.08735
https://arxiv.org/abs/1912.08735
https://github.com/CMU-SAFARI/AirLift


AirLift
n Key observation: Reference genomes are updated frequently. 

Repeating read mapping is a computationally expensive workload.

n Key idea: Update the mapping results of only affected reads 
depending on how a region in the old reference relates to another 
region in the new reference. 

n Key results: 
q reduces number of reads that needs to be re-mapped to new 

reference by up to 99%
q reduces overall runtime to re-map reads by 6.94x, 208x, and 

16.4x for large (human), medium (C. elegans), and small
(yeast) reference genomes
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Clustering the Reference Genome Regions
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More Details on AirLift
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Jeremie S. Kim, Can Firtina, Meryem Banu Cavlak, Damla Senol Cali, 
Mohammed Alser, Nastaran Hajinazar, Can Alkan, Onur Mutlu
“AirLift: A Fast and Comprehensive Technique for Remapping Alignments between 
Reference Genomes”
arXiv 2022
GitHub: https://github.com/CMU-SAFARI/AirLift

https://arxiv.org/abs/1912.08735
https://arxiv.org/abs/1912.08735
https://github.com/CMU-SAFARI/AirLift


Agenda for Today
n What is Genome Analysis?
n What is Intelligent Genome Analysis?

n How we Analyze Genome?
n What are the Barriers to Enabling Intelligent Analyses?

n Algorithmic & Hardware Acceleration 
q Seed Filtering Technique
q Pre-alignment Filtering Technique
q Read Alignment Acceleration

n Where is Genomic Analyses Going Next?
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Adoption of
hardware accelerators

in genome analysis



Bioinformatics: Reviewer #6 (Dec. 2016)
I have a major concern with the work that is actually
not a problem with the manuscript at all. Specifically, I
have the concern that there has been little to no adoption of
previous specialized hardware solutions related to improving
the speed of alignment. While there has been considerable
work in this area (which the authors do an admirable job of
citing), it does not seem that these hardware-based solutions
have gained any type of real traction in the community, as the
vast majority of alignment is still performed on “regular” CPUs,
where the extent of hardware acceleration is the adoption of
specific SIMD or vectorized instructions. While I don’t think
that this practical concern should preclude publication of the
current work, it is something worth considering (what, if any,
of the proposed improvements to the SHD filter could be
“back-ported” to a software-only solution).
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Our Response
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Our Response (cont’d)
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Dream 
and, they will come

272

Computing landscape is very different from 10-20 years ago



Illumina DRAGEN Bio-IT Platform (2018)
n Processes whole genome at 30x coverage in ~25 minutes 

with hardware support for data compression

273

FPGA board(s)

emea.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html
emea.illumina.com/company/news-center/press-releases/2018/2349147.html

https://emea.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html
https://emea.illumina.com/company/news-center/press-releases/2018/2349147.html


NVIDIA Clara Parabricks (2020)

274https://developer.nvidia.com/clara-parabricks

GPU board(s) A University of Michigan’s startup in 
2018 and joined NVIDIA in 2020

https://developer.nvidia.com/clara-parabricks
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Computing
is Still Bottlenecked by 

Data Movement



Adoption Challenges of Hardware Accelerators
n Accelerate the entire read mapping process rather than its 

individual steps (Amdahl’s law)

n Reduce the high amount of data movement
q Working directly on compressed data
q Filter out unlikely-reused data at the very first component of the 

compute system

n Develop flexible hardware architectures that do NOT 
conservatively limit the range of supported parameter 
values at design time

n Adapt existing genomic data formats for hardware 
accelerators or develop more efficient file formats
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Adoption Challenges of Hardware Accelerators

n Maintaining the same (or better) accuracy/sensitivity of the 
output results of the software version
q Using heuristic algorithms to gain speedup!

n High hardware cost

n Long development life-cycle for FPGA platforms
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Did we Achieve Our Goal?
n Fast genome analysis in mere seconds using limited 

computational resources (i.e., personal computer or small 
hardware).
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1997 2015     



Open Questions

How and where to enable

fast, accurate, cheap, 

privacy-preserving, and exabyte scale 
analysis of genomic data?
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Pushing Towards New Architectures

280
(General Purpose) GPUs

Heterogeneous
Processors and 

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

FPGAs Modern systems

?
Sequencing 

Machine



Cerebras’s Wafer Scale Engine (2019)
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Cerebras WSE               
1.2 Trillion transistors

46,225 mm2

Largest GPU               
21.1 Billion transistors

815 mm2

n The largest ML 
accelerator chip

n 400,000 cores 

NVIDIA TITAN V

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Onur Mutlu, Computer Architecture Lecture 2b, Fall 2019, ETH Zurich

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture2b-courselogistics-afterlecture.pdf


TESLA Full Self-Driving Computer (2019)
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n ML accelerator: 260 mm2, 6 billion transistors, 
600 GFLOPS GPU, 12 ARM 2.2 GHz CPUs.

n Two redundant chips for better safety.
https://youtu.be/Ucp0TTmvqOE?t=4236

Onur Mutlu, Computer Architecture Lecture 2b, Fall 2019, ETH Zurich

https://youtu.be/Ucp0TTmvqOE?t=4236
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture2b-courselogistics-afterlecture.pdf


NextSeq 2000 with Analysis Capability
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NVIDIA H100 (2022)

284

NVIDIA is claiming a 7x improvement in dynamic programming 
algorithm (DPX instructions) performance on a single H100 
versus naïve execution on an A100.

https://www.nvidia.com/en-us/data-center/h100/

https://www.nvidia.com/en-us/data-center/h100/


BioPIM (2022)
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The vision of BioPIM is the realization of cheap, ultra-fast and ultra-low energy mobile 
genomics that eliminates the current dependence of sequence analysis on large and power-
hungry computing clusters/data-centers.



UPMEM Processing-in-DRAM Engine (2019)

286

n Processing in DRAM Engine 
n Includes standard DIMM modules, with a large 

number of DPU processors combined with DRAM chips.

n Replaces standard DIMMs
q DDR4 R-DIMM modules

n 8GB+128 DPUs (16 PIM chips)
n Standard 2x-nm DRAM process

q Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

Onur Mutlu, Computer Architecture Lecture 2b, Fall 2019, ETH Zurich

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture2b-courselogistics-afterlecture.pdf


Where is Read Mapping Going Next?

Will 100% accurate genome-long 
reads alleviate/eliminate the need for 

read mapping?
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Think about metagenomics, pan-genomics, ...



Lecture Conclusion
n System design for bioinformatics is a critical problem

q It has large scientific, medical, societal, personal implications

n This lecture is about accelerating a key step in bioinformatics: 
genome sequence analysis
q In particular, read mapping

n Many bottlenecks exist in accessing and manipulating huge 
amounts of genomic data during analysis

n We cover various recent ideas to accelerate read mapping
q A journey since September 2006
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Key Takeaways
n Population-scale analyses are not an easy task

n You need to consider many things in designing a new 
system + have good intuition/insight into ideas/tradeoffs

n But, it is fun and can be very rewarding/impactful

n And, enables a great future
q It has large scientific, medical, societal, personal implications

n Very hot topic for graduate studies and research!
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Key Conclusion

Most speedup comes from 

parallelism enabled by 

novel architectures and algorithms
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Recommended Readings
n Jones, Neil C. and Pavel Pevzner. “An introduction to 

bioinformatics algorithms,” MIT press, 2004.
n Mäkinen, Veli, Djamal Belazzougui, Fabio Cunial, and 

Alexandru I. Tomescu. “Genome-scale algorithm design,”
Cambridge University Press, 2015.
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Read Mapping in 111 pages! 
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Mohammed Alser, Jeremy Rotman, Dhrithi Deshpande, Kodi Taraszka, Huwenbo
Shi, Pelin Icer Baykal, Harry Taegyun Yang, Victor Xue, Sergey Knyazev, Benjamin D. 
Singer, Brunilda Balliu, David Koslicki, Pavel Skums, Alex Zelikovsky,
Can Alkan, Onur Mutlu, Serghei Mangul
"Technology dictates algorithms: Recent developments in read alignment" 
Genome Biology, 2021
[Source code]

In-depth analysis of 107 read mappers (1988-2020)

https://arxiv.org/abs/2003.00110
https://github.com/Mangul-Lab-USC/review_technology_dictates_algorithms


Detailed Analysis of Tackling the Bottleneck

294

Mohammed Alser, Zülal Bingöl, Damla Senol Cali, Jeremie Kim, Saugata Ghose,
Can Alkan, Onur Mutlu
“Accelerating Genome Analysis: A Primer on an Ongoing Journey” 
IEEE Micro, August 2020.

https://arxiv.org/pdf/2008.00961.pdf


Near-memory Pre-alignment Filtering
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Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, 
Juan Gomez-Luna, Henk Corporaal, Onur Mutlu,
“FPGA-Based Near-Memory Acceleration of Modern Data-Intensive 
Applications“
IEEE Micro, 2021.
[Source Code]

https://arxiv.org/pdf/2106.06433.pdf
https://arxiv.org/pdf/2106.06433.pdf
https://github.com/CMU-SAFARI/SneakySnake/tree/master/SneakySnake-HLS-HBM


Accelerating Genome Analysis

296https://www.youtube.com/watch?v=qPIiiwUVFug

https://www.youtube.com/watch?v=qPIiiwUVFug


More on Accelerating Genome Analysis ...
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n Mohammed Alser,
"Accelerating Genome Analysis: A Primer on an Ongoing Journey"
Talk at RECOMB 2021, Virtual, August 30, 2021.
[Slides (pptx) (pdf)]
[Talk Video (27 minutes)]
[Related Invited Paper (at IEEE Micro, 2020)]

https://www.youtube.com/watch?v=RzurItt3nNA
https://www.recomb2021.org/
https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqa0NLMXdWZWRKaUlhV3JEZlNaTHN0Ukp0WUctd3xBQ3Jtc0ttWGlJUEhQcDFIQ0VubjdwOGlrZnZSN1R3MGlHOUY5OTlCRmUtbFpLMkpaTXFlRFhCaENrdDRQd2E3LUJ2NTg1ekFrS01WRjlvYkxNU3VNUDV6TmhUdWliUTJpaHRjVkRmZWNzQjhjNVdjcE04a1RuWQ&q=https%3A%2F%2Fsafari.ethz.ch%2Fsafari_public_wp%2Fwp-content%2Fuploads%2FMohammedAlser-RECOMB2021-Highlights.pptx
https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqa0NLMXdWZWRKaUlhV3JEZlNaTHN0Ukp0WUctd3xBQ3Jtc0ttWGlJUEhQcDFIQ0VubjdwOGlrZnZSN1R3MGlHOUY5OTlCRmUtbFpLMkpaTXFlRFhCaENrdDRQd2E3LUJ2NTg1ekFrS01WRjlvYkxNU3VNUDV6TmhUdWliUTJpaHRjVkRmZWNzQjhjNVdjcE04a1RuWQ&q=https%3A%2F%2Fsafari.ethz.ch%2Fsafari_public_wp%2Fwp-content%2Fuploads%2FMohammedAlser-RECOMB2021-Highlights.pdf
https://www.youtube.com/watch?v=RzurItt3nNA
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf


More on Intelligent Genome Analysis …
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n Mohammed Alser,
"Computer Architecture - Lecture 10: Intelligent Genome Analysis"
ETH Zurich, Computer Architecture Course, Fall2021, Lecture 10, Virtual, 29 October 2021.
[Slides (pptx) (pdf)]
[Talk Video (3 hour 2 minutes, including Q&A)]
[Related Invited Paper (at IEEE Micro, 2020)]

https://www.youtube.com/watch?v=tm-IRYa14qs
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=alser-comparch-fall2021-lecture10-intelligent-genome-analysis-afterlecture.pptx
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=alser-comparch-fall2021-lecture10-intelligent-genome-analysis-afterlecture.pdf
https://www.youtube.com/watch?v=tm-IRYa14qs
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf


More on Intelligent Genome Analysis …
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n Mohammed Alser,
"Computer Architecture - Lecture 8: Intelligent Genome Analysis"
ETH Zurich, Computer Architecture Course, Lecture 8, Virtual, 15 October 2021.
[Slides (pptx) (pdf)]
[Talk Video (2 hour 54 minutes, including Q&A)]
[Related Invited Paper (at IEEE Micro, 2020)]

https://www.youtube.com/watch?v=ygmQpdDTL7o
https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqbTBEWks1NUZ6cWVnbTVWdC1qRW0tY3paUkdjUXxBQ3Jtc0trd25qZHpmdC1nSGtkQnFjeWI1Wi1pTm5wQzBEbEdEZ05IaFdfRlN3U1h6QmxZUnNIR002cWthS0lWRkQwSU4xcVVtT2V0WkRRdkhrQUdlWExydTVyeHB4SXlERHZXODJGeWtiLTF2OXZCb2xkUWEwaw&q=https%3A%2F%2Fsafari.ethz.ch%2Farchitecture%2Ffall2020%2Flib%2Fexe%2Ffetch.php%3Fmedia%3Dalser-comparch-fall2020-lecture8-intelligent-genome-analysis-afterlecture.pptx
https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqbTBEWks1NUZ6cWVnbTVWdC1qRW0tY3paUkdjUXxBQ3Jtc0trd25qZHpmdC1nSGtkQnFjeWI1Wi1pTm5wQzBEbEdEZ05IaFdfRlN3U1h6QmxZUnNIR002cWthS0lWRkQwSU4xcVVtT2V0WkRRdkhrQUdlWExydTVyeHB4SXlERHZXODJGeWtiLTF2OXZCb2xkUWEwaw&q=https%3A%2F%2Fsafari.ethz.ch%2Farchitecture%2Ffall2020%2Flib%2Fexe%2Ffetch.php%3Fmedia%3Dalser-comparch-fall2020-lecture8-intelligent-genome-analysis-afterlecture.pdf
https://www.youtube.com/watch?v=ygmQpdDTL7o
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf


More on Fast Genome Analysis …
n Onur Mutlu,

"Accelerating Genome Analysis: A Primer on an Ongoing Journey"
Invited Lecture at Technion, Virtual, 26 January 2021.
[Slides (pptx) (pdf)]
[Talk Video (1 hour 37 minutes, including Q&A)]
[Related Invited Paper (at IEEE Micro, 2020)]

300

https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://www.technion.ac.il/en/
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pdf
https://www.youtube.com/watch?v=r7sn41lH-4A
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf


Detailed Lectures on Genome Analysis
n Computer Architecture, Fall 2020, Lecture 3a

q Introduction to Genome Sequence Analysis (ETH Zürich, Fall 2020)
q https://www.youtube.com/watch?v=CrRb32v7SJc&list=PL5Q2soXY2Zi9xidyIgBxUz7

xRPS-wisBN&index=5

n Computer Architecture, Fall 2020, Lecture 8
q Intelligent Genome Analysis (ETH Zürich, Fall 2020)
q https://www.youtube.com/watch?v=ygmQpdDTL7o&list=PL5Q2soXY2Zi9xidyIgBxU

z7xRPS-wisBN&index=14

n Computer Architecture, Fall 2020, Lecture 9a
q GenASM: Approx. String Matching Accelerator (ETH Zürich, Fall 2020)
q https://www.youtube.com/watch?v=XoLpzmN-

Pas&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=15 

n Accelerating Genomics Project Course, Fall 2020, Lecture 1
q Accelerating Genomics (ETH Zürich, Fall 2020)
q https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL5Q2soXY2Zi9E2bBVAgCqL

gwiDRQDTyId
301https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=CrRb32v7SJc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=5
https://www.youtube.com/watch?v=CrRb32v7SJc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=5
https://www.youtube.com/watch?v=ygmQpdDTL7o&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=14
https://www.youtube.com/watch?v=ygmQpdDTL7o&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=14
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL5Q2soXY2Zi9E2bBVAgCqLgwiDRQDTyId
https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL5Q2soXY2Zi9E2bBVAgCqLgwiDRQDTyId
https://www.youtube.com/onurmutlulectures


Prior Research on Genome Analysis (1/2)
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n Alser+, "Technology dictates algorithms: Recent developments in read 
alignment", Genome Biology, 2021.

n Alser + "SneakySnake: A Fast and Accurate Universal Genome Pre-
Alignment Filter for CPUs, GPUs, and FPGAs.", Bioinformatics, 2020.

n Senol Cali+, "GenASM: A High-Performance, Low-Power Approximate 
String Matching Acceleration Framework for Genome Sequence Analysis", 
MICRO 2020.

n Kim+, "AirLift: A Fast and Comprehensive Technique for Translating 
Alignments between Reference Genomes", arXiv, 2020

n Alser+, “Accelerating Genome Analysis: A Primer on an Ongoing Journey”, 
IEEE Micro, 2020.

https://arxiv.org/abs/2003.00110
https://arxiv.org/abs/2003.00110
https://arxiv.org/pdf/1910.09020.pdf
https://arxiv.org/pdf/1910.09020.pdf
https://arxiv.org/abs/2009.07692
https://arxiv.org/abs/2009.07692
https://arxiv.org/abs/1912.08735
https://arxiv.org/abs/1912.08735
https://arxiv.org/pdf/2008.00961.pdf


Prior Research on Genome Analysis (2/2)

303

n Firtina+, “Apollo: a sequencing-technology-independent, scalable and 
accurate assembly polishing algorithm”, Bioinformatics, 2019.

n Alser+, “Shouji: a fast and efficient pre-alignment filter for sequence 
alignment”, Bioinformatics 2019.

n Kim+, "GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping 
Using Processing-in-Memory Technologies”, BMC Genomics, 2018.

n Alser+, "GateKeeper: A New Hardware Architecture for Accelerating 
Pre-Alignment in DNA Short Read Mapping”, Bioinformatics, 2017.

n Alser+, "MAGNET: understanding and improving the accuracy of 
genome pre-alignment filtering”, IPSI Transaction, 2017.

https://academic.oup.com/bioinformatics/article-abstract/36/12/3669/5804978
https://academic.oup.com/bioinformatics/article-abstract/36/12/3669/5804978
https://doi.org/10.1093/bioinformatics/btz234
https://doi.org/10.1093/bioinformatics/btz234
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-018-4460-0
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-018-4460-0
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://arxiv.org/pdf/1707.01631.pdf
https://arxiv.org/pdf/1707.01631.pdf
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Challenges in Read Mapping
n Need to find many mappings of each read

n Need to tolerate variances/sequencing errors in each read

n Need to map each read very fast (i.e., performance is 
important, life critical in some cases)

n Need to map reads to both forward and reverse strands

305https://www.bioinformaticsalgorithms.org/bioinformatics-chapter-1
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Analysis is Bottlenecked in Read Mapping!!
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Human whole 
genomes 

Human 1
Illumina NovaSeq 6000 

48
at 30× coverage

in about 2 days

genome
32 CPU hours 

on a 48-core processor

71%

29%

Read Mapping Others

Goyal+, "Ultra-fast next generation human genome sequencing data processing using DRAGENTM bio-IT 
processor for precision medicine”, Open Journal of Genetics, 2017.

https://www.scirp.org/journal/paperinformation.aspx?paperid=74603
https://www.scirp.org/journal/paperinformation.aspx?paperid=74603
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What makes 
read mapping 
a bottleneck? 



A Tsunami of Sequencing Data
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A Tera-scale increase in sequencing production in the past 25 years



Lack of Specialized Compute Capability
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Specialized Machine
for Sequencing

General-Purpose Machine
for Analysis

FAST                 SLOW



Today’s Computing Systems
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Burks, Goldstein, von Neumann, “Preliminary discussion of the logical 
design of an electronic computing instrument,” 1946.

von Neumann model, 1945
where the CPU can access data stored in an off-chip 
main memory only through power-hungry bus



The Problem

Data analysis 
is performed 

far away from the data
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Data Movement Dominates Performance
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MicroprocessorMain MemoryStorage (SSD/HDD)Sequencing 
Machine

n Data movement dominates performance and is a major
system energy bottleneck (accounting for 40%-62%)

✻ Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
★ Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” IISWC 2013 
☆ Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” IISWC 2014

Data Movement

Single memory request consumes >160x-800x more 
energy compared to performing an addition operation  



Read Mapping
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Reference genomeReads
“text format”

DNA Sample
“chemical format”

Subject genome
“text format”

Map reads to a known reference genome with some 
minor differences allowed



Metagenomics Analysis
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Reference 
Database

Reads
“text format”

genetic material recovered 
directly from environmental 

samples

Reads from different unknown donors at sequencing 
time are mapped to many known reference genomes



Genomics vs. Metagenomics
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Genomics

Metagenomics



More on Metagenomic Profiling: Metalign
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Nathan LaPierre, Mohammed Alser, Eleazar Eskin, David Koslicki, Serghei Mangul
“Metalign: efficient alignment-based metagenomic profiling via containment min 
hash” Genome Biology, September 2020.
[Talk Video (7 minutes) at ISMB 2020]
[Source code]

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02159-0
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02159-0
https://www.youtube.com/watch?v=dh3RHrkbaZA
https://github.com/nlapier2/Metalign


Check Also CAMI II Paper
F. Meyer, A. Fritz, Z.L. Deng, D. Koslicki, A. Gurevich, G. Robertson,
Mohammed Alser, and others
“Critical Assessment of Metagenome Interpretation - the second 
round of challenges”
bioRxiv, 2021
[Source Code]
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https://www.biorxiv.org/content/10.1101/2021.07.12.451567v1.abstract
https://www.biorxiv.org/content/10.1101/2021.07.12.451567v1.abstract
https://github.com/CAMI-challenge/second_challenge_evaluation


Check Also MiCoP
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Nathan LaPierre, Serghei Mangul, Mohammed Alser, Igor Mandric, Nicholas C. Wu, 
David Koslicki & Eleazar Eskin
“MiCoP: microbial community profiling method for detecting viral and fungal organisms 
in metagenomic samples” 
BMC Genomics, June 2019.
[Source code]

https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-5699-9
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-5699-9
https://github.com/smangul1/MiCoP

