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Mohammed Alser

= Lecturer and Senior Researcher, SAFARI Research Group, ETH ZUrich,’
since Sept. 2018.

= PhD from Bilkent University (Turkey) 2018, worked at UCLA, TU Dresden, and
PETRONAS.

= Received the IEEE Turkey Doctoral Dissertation Award and a number of
international prestigious awards.

. y https://twitter.com/mealser

= My main research is in bioinformatics, computational genomics,
metagenomics, and computer architecture.

= I am especially excited about building new data structures, algorithms,
and architectures that make intelligent genome analysis a reality.

SAFARI 2


https://safari.ethz.ch/
https://ethz.ch/en.html
https://arxiv.org/abs/1910.03936
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Agenda for Today

What is Genome Analysis?
What is Intelligent Genome Analysis?

How we Analyze Genome?
What are the Barriers to Enabling Intelligent Analyses?

Algorithmic & Hardware Acceleration
o Seed Filtering Technique

o Pre-alignment Filtering Technique

o Read Alignment Acceleration

Where is Genomic Analyses Going Next?
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Agenda for Today

= What is Genome Analysis?
s What is Intelligent Genome Analysis?

= How we Analyze Genome?
= What are the Barriers to Enabling Intelligent Analyses?

= Algorithmic & Hardware Acceleration
o Seed Filtering Technique
a Pre-alignment Filtering Technique
o Read Alignment Acceleration

s Where is Genomic Analyses Going Next?
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Intelligent Genome Analysis

Mohammed Alser, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao,
Gagandeep Singh, Juan Gomez-Luna, Onur Mutlu

“From Molecules to Genomic Variations: Intelligent Algorithms and Architectures for
Intelligent Genome Analysis”

Computational and Structural Biotechnology Journal, 2022
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Review

From molecules to genomic variations: Accelerating genome analysis via = M)
intelligent algorithms and architectures ety

Mohammed Alser *, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao, Gagandeep Singh,
Juan Gomez-Luna, Onur Mutlu *

ETH Zurich, Gloriastrasse 35, 8092 Ziirich, Switzerland
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https://arxiv.org/abs/2205.07957
https://arxiv.org/abs/2205.07957
https://github.com/CMU-SAFARI/Molecules2Variations

What 1s Data Analysis?

“The purpose of COIT) putlng is [to gain]
insig ht, not numbers”

Richard Hamming

SAFARI 6



We need to gain insights
and observations
much more efficiently
than ever before

SAFARI



Major Generators of Big Data

Big data is everywhere ...

Astronomy Twitter
25 zetta-bytes/year 0.5-15 billion tweets/year

R
2 YouTube

YouTube Genomics
500-900 million hours/year 1 zetta-bases/year

SAFARI  "Big data: astronomical or genomical?”, PLoS biology, 2015.
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https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002195
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What 1s Intelligent Data Analysis?

= The science and art of revealing previously
unknown and potentially valuable information or
knowledge from data while meeting functional,
performance, energy consumption, cost, and other
specific goals

SAFARI Adapted from the definition of data mining 10



What is a Genome?

— -\ ’
ﬂ |

SAFARI https://onlinelearning.hms.harvard.edu/hmx/courses/genetic-testing/ 11




CCTCCTCAGTGCCACCCAGCCCACTGGCAGCTCCCAAACA
GGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTG
AGGTGTCAAGGACCTAAACTAAAAAAAAAAAAAGAAAA
AGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAA

AAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATG

TGCTAAACAGCACTTTTTTGACCATTATTTTGGATCTGAAA
GAAATCAAGAATAAATGAAGGACTTGATACATTGGAAGA
GGAGAGTCAAGGACCTACAGAAAAAAAAAAAAAAGAAA

AAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTITTGA
AAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAAT
GTCTGTGTTGCAGGTCTTCTTGCATTTCCCTGTCAAAAGA
AAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTA
ATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCAGGCC
GGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTG




How Large 1s a Genome?

~3.2 billion genomic bases

SAFARI
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How About Other Species?

SAFARI 14



DNA Testing

HEALTH
+
ANCESTRY
x?J.A.nJMe

Welcome to you

| TR

Health + Ancestry
Service

$199

* Includes everything in Ancestry +
Traits Service

FEUS

e 10+ Health Predisposition reports*

e 5+ Wellness reports

e 40+ Carrier Status reports* N

SAFARI|  https://www.myheritage.ch/dna  https://www.23andme.com/ 15
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Human Chromosomes (23 Pairs)
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Human Chromosomes (23 Pairs)

From From —= =Adenine

dad
1 = Thymine
/ )/ 3 = Cytosine
4 > = Guanine
11 )\1 2 = Phosphate

backbone
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DNA Under Electron Microscope

human chromosome #12
from Hela’s cell

SAFARI
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DNA Under Electron Microscope

from Hela’s cell
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DNA Under Electron Microscope

3"

SATURDAY ar 8

human chromosome #12
from Hela’s cell
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The Central Dogma ot Molecular Biology

Genotypes

Replicay

Translation

SAFARI 21



Cells of Different Organs and Tissues

= All the cells in a person's body have the same DNA and the
same genes.

o Expression of the genes differs between cells.
o But not all genes are used or expressed by those cells.

ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON

OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF

o 20,000-25,000
o human genes

NIH 2009 National DNA Day
gene

SAFARI 22



Finding SNPs Associated with Complex Trait

SNP1 SNP2 Blood Pressure
...ACATGCCGACATTTCATAGGCC... 180
...ACATGCCGACATTTCATAAGCC... 175
...ACATGCCGACATTTCATAGGCC... 170

Individual #4 ...ACATGCCGACATTTCATAAGCC... 165
...ACATGCCGACATTTCATAGGCC... 160
...ACATGCCGACATTTCATAGGCC... 145
...ACATGCCGACATTTCATAAGCC... 140
...ACATGCCGACATTTCATAAGCC... 130
...ACATGTCGACATTTCATAGGCC... 120
...ACATGTCGACATTTCATAAGCC... 120
...ACATGTCGACATTTCATAGGCC... 115
...ACATGTCGACATTTCATAAGCC... 110
...ACATGTCGACATTTCATAGGCC... 110
...ACATGTCGACATTTCATAAGCC... 110
...ACATGTCGACATTTCATAGGCC... 105
...ACATGTCGACATTTCATAAGCC... 100

SNP: single nucleotide polymorphism
SAFARI Eleazar Eskin: Discovering the Causal Variants Involved in GWAS Studies, CGSI 2018, UCLA23



computationalgenomics.bioinformatics.ucla.edu/portfolio/eleazar-eskin-discovering-the-causal-variants-involved-in-gwas-studies

Genome-Wide Association Study (GWAS)

= Detecting genetic variants associated with phenotypes
using two groups of people.

T C u T C U
controls (n=1,000) cases (n=1,000)
people without heart disease people with heart disease
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S AFARI https://onlinelearning.hms.harvard.edu/hmx/courses/genetic-testing/
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Similar Association Studies

nature |
IEtE//RdeOIE/ESB;I/-s!'EVSB-Em 9-0385-z genetlcs

Opportunities and challenges for transcriptome-
wide association studies

Michael Wainberg', Nasa Sinnott-Armstrong ©2, Nicholas Mancuso @3, Alvaro N.Barbeira®©*

1

David A.Knowles ©35, David Golan?, Raili Ermel’, Arno Ruusalepp’8, Thomas Quertermous©?,
KeHao®, JohanL. M. Bjorkegren ©3810112* Hae Kyung Im ©4*, Bogdan Pasaniuc ©31314*,
Manuel A.Rivas ©* and Anshul Kundaje ©2*

Transcriptome-wide association studies (TWAS) integrate genome-wide association studies (GWAS) and gene expression
datasets to identify gene-trait associations. In this Perspective, we explore properties of TWAS as a potential approach to
prioritize causal genes at GWAS loci, by using simulations and case studies of literature-curated candidate causal genes for
schizophrenia, low-density-lipoprotein cholesterol and Crohn's disease. We explore risk loci where TWAS accurately prioritizes
the likely causal gene as well as loci where TWAS prioritizes multiple genes, some likely to be non-causal, owing to sharing
of expression quantitative trait loci (eQTL). TWAS is especially prone to spurious prioritization with expression data from
non-trait-related tissues or cell types, owing to substantial cross-cell-type variation in expression levels and eQTL strengths.
Nonetheless, TWAS prioritizes candidate causal genes more accurately than simple baselines. We suggest best practices for
causal-gene prioritization with TWAS and discuss future opportunities for improvement. Our results showcase the strengths
and limitations of using eQTL datasets to determine causal genes at GWAS loci.

Wainberg+, "Opportunities and challenges for transcriptome-wide

SAFARI association studies”, Nature genetics, 2019. 25



https://www.nature.com/articles/s41588-019-0385-z
https://www.nature.com/articles/s41588-019-0385-z

SNPs and Personalized Medicine

openSNP B soerch = Allele Frequency

SNP rs12979860

Basic Information
Name rs12979860 h
Chromosome 19 49%
Position 39248147 w
Weight of evidence 926

Links to SNPedia

Title Summary
rs12979860 T/T ~20-25% of such hepatitis ¢ patients respond to treatment
rs12979860 C/C ~80% of such hepatitis ¢ patients respond to treatment

rs12979860 C/T ~20-40% of such hepatitis ¢ patients respond to treatment

SAFARI https://opensnp.org/snps/rs12979860



Much Larger Structural Variations!

W AUTISM i
Weiss, N Eng J Med 2008 =
Deletion of 593 kb

OBESITY # ,i UNDERWEIGHT
Walters, Nature 2010 Jacquemont, Nature 2011
Deletion of 593 kb Duplication of 593 kb

-!- Deletion in the short arm Duplication in the short arm

l l of chromosome 16 (16p11.2) l l of chromosome 16 (16p11.2)

SAFARI CNV: copy number variation 27



Recommended Reading

nature reviews genetics

Explore our content v Journal information v

nature > nature reviews genetics > review articles > article

Review Article | Published: 15 November 2019

Structural variation in the sequencing era
Steve S. Ho, Alexander E. Urban & Ryan E. Mills

Nature Reviews Genetics 21, 171-189(2020) | Cite this article
15k Accesses | 16 Citations | 309 Altmetric | Metrics

Ho+, "Structural variation in the sequencing era", Nature Reviews Genetics, 2020

SAFARI 28


https://www.nature.com/articles/s41576-019-0180-9

Agenda for Today

s What is Genome Analysis?
= What is Intelligent Genome Analysis?

= How we Analyze Genome?
= What are the Barriers to Enabling Intelligent Analyses?

= Algorithmic & Hardware Acceleration
o Seed Filtering Technique
a Pre-alignment Filtering Technique
o Read Alignment Acceleration

s Where is Genomic Analyses Going Next?

SAFARI
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What 1s Intelligent Genome Analysis?

= Fast genome analysis Bandwidth
Q Real-time analysis?

= Population-scale genome analysis Scalability
Q MNumber of analyses per day!

= Using intelligent architectures Energy-efficiency &
Q Small specialized HW with less data movement Portabil ity

= DNA is a valuable asset Privacy

Q Controlled-access analysis

= Avoiding erroneous analysis Accuracy
Q E£.g., your father is not your father

SAFARI 30



Does intelligent genome
analysis really matter?

SAFARI



Fast Genome Analysis?

Fast genome analysis in mere seconds using limited
computational resources (i.e., personal computer or small
hardware).

TOMORROWLAND
Ny
I

)

SAFARI



Personalized Medicine for Critically Il Infants

= rWGS can be performed in 2-day (costly) or 5-day time to

interpretation.

= Diagnostic rWGS for infants
o Avoids morbidity

o Reduces hospital stay length by 6%-69%
o Reduces inpatient cost by $800,000-$2,000,000.

Article | Open Access | Published: 04 April 2018

Rapid whole-genome sequencing decreases infant

morbidity and cost of hospitalization

Lauge Farnaes, Amber Hildreth, Nathaly M. Sweeney, Michelle M. Clark,
Chowdhury, Shareef Nahas, Julie A. Cakici, Wendy Benson, Robert H. Ka
Richard Kronick, Matthew N. Bainbridge, Jennifer Friedman, Jeffrey J. Gg

Ding, Narayanan Veeraraghavan, David Dimmock & Stephen F. Kingsmorg¢

npj Genomic Medicine 3, Article number: 10 (2018) | Cite this article

Article | Open Access | Published: 05 May 2020

Clinical utility of 24-h rapid trio-exome sequencing for
critically ill infants

Huijun Wang, Yanyan Qian, Yulan Lu, Qian Qin, Guoping Lu, Guogiang Cheng,
Ping Zhang, Lin Yang, Bingbing Wu &3 & Wenhao Zhou

npj Genomic Medicine 5, Article number: 20 (2020) | Cite this article

SAFARI Farnaes+, “Rapid whole-genome sequencing decreases infant morbidity and 33
cost of hospitalization”, NPJ Genomic Medicine, 2018



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884823/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884823/

Personalized Medicine in UK

“From 2019, all seriously ill children in uk
will be offered WhOle genome sequencing

as part of their care”

NHS|

National Institute for
Health Research

SAFARI
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Population-Scale Genomics

Characterizing genomic variations of 49,962 Icelanders took
4.15 million CPU hours or 83 CPU hours per sample on

average
Sample 1 ..GTGCBMGGCCCAT...
w Sample 2 .GTGCEMGGCCCAT...

“GraphTyper2 enables population-scale genotyping of structural variation using
pangenome graphs”, Nature Communications, 2019

SAFARI 3



https://www.nature.com/articles/s41467-019-13341-9
https://www.nature.com/articles/s41467-019-13341-9

Rapid Surveillance of Disease Outbreaks?

Figure 1: Deployment of the portable genome surveillance system in Guinea.

Quick+, “Real-time, portable genome sequencing for Ebola surveillance”, Nature, 2016

SAFARI 36


https://www.nature.com/articles/nature16996

Scalable SARS-CoV-2 Testing

nature biomedical engineering

Explore content v  About the journal v  Publish with us v

nature > nature biomedical engineering > articles > article

Article | Published: 01 July 2021
Massively scaled-up testing for SARS-CoV-2 RNA via

next-generation sequencing of pooled and barcoded
nasal and saliva samples

Joshua S. Bloom &, Laila Sathe, [...] Valerie A. Arboleda

Nature Biomedical Engineering 5, 657-665 (2021) | Cite this article

4675 Accesses | 110 Altmetric | Metrics

Bloom+, "Swab-Seq: A high-throughput platform for massively scaled up SARS-
CoV-2 testing", Nature Biomedical Engineering, 2021

SAFARI 37


https://www.medrxiv.org/content/10.1101/2020.08.04.20167874v2
https://www.medrxiv.org/content/10.1101/2020.08.04.20167874v2

Population-Scale Microbiome Profiling
. | I

.l
1]

S A FA R ] https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/ 38


https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/

Populatlon Scale M1crob10me Profiling

Goal What organlsms are present in a g|ven
enwronment and how abundant are they?

S A FA R https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/ 39



https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/

Petabase-scale Viral Discovery

= Building and Profiling 3,500 genomic assemblies needs
28,000 virtual AWS CPUs.

Human - 1682 I Novel
Mouse | 378
Mammal B 1,705 Koo
Vertebrate - B 1,151
Invertebrate - I 6.654
Fungus 1,370
Plant V._ 11,00
Prokaryote -
Metagenome -
Virome |
Environmental -
M | WGS 2
AUmAVECH L 210,000
0o 1 2 0 5,000 10,000 15,000 Origin of RARP*
Petabases Unique sOTUs BioSamples
b searched
150,000 4
100,000
0 T — _ ,..__M__,_____
2010 2015 2020
SRA growth rate (added per month) e | come tQ S err
\ -y £ ‘ .
N uc I € Otl d € o . ,’* P An open=science viraldiscovery platform
3K JEhe
ATGCATCAGGAATAGAC. . . https://serratus. IO/
bowtie2 Coronavirus Vertebrate Anti-Microbial
Genomes + Viral Genomes Resistence Genes
3.8m
Fragments

Edgar+, "Petabase-scale sequence alignment catalyses viral discovery"”, Nature 2022
SAFARI 40



https://www.nature.com/articles/s41586-021-04332-2
https://serratus.io/

Clty—Scale Microbiome Proﬁhng

Cc

1. Swab (3 mln)

Extract DNA (n=1,457 samples)

R 2

[llumina and Qiagen Library Prep

¥

HiSeq2500 125x125 Sequences

Figure 1. The Metagenome of New York City
(A) The five boroughs of NYC include (1) Manhattan (green)

&

‘ Quality Trim (Q20)

L

MegaBLAST-LCA alignment

U

MetaPhlAN classification

2. Annotate 3 GPS tag/tlmestamp
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bacghe k"’”’ 4

D E

Viruses Archaea Plasmids
Ambiguous__0.032% 0.003% 0.001%
B

4.184%
Eukaryota

0.771%

Afshinnekoo+, "Geospatial Resolution of Human and
Bacterial Diversity with City-Scale Metagenomics"”, Cell
Systems, 2015

(B) The collection from the 466 subway stations of NYC across the 24 subway lines involved three main steps: (1) collection with Copan Elution swabs, (2) data
s A ‘ entry into the database, and (3) uploading of the data. An image is shown of the current collection database, taken from http://pathomap.giscloud.com. 41
(C) Workflow for sample DNA extraction, library preparation, sequencing, quality trimming of the FASTQ files, and alignment with MegaBLAST and MetaPhlAn to

disrern taxa nresant


https://www.cell.com/cell-systems/pdfExtended/S2405-4712(15)00002-2
https://www.cell.com/cell-systems/pdfExtended/S2405-4712(15)00002-2

Population-Scale Microbiome Profiling

Login  Register S

PDF D *
ARTICLE | ONLINE NOW g b

PDF [9 MB]  Figures /4 Save

A global metagenomic map of urban microbiomes and
antimicrobial resistance

David Danko ® - Daniela Bezdan © « Evan E. Afshin « ... Sibo Zhu « Christopher E. Mason 2 % &

The International MetaSUB Consortium « Show all authors « Show footnotes

Published: May 26, 2021 < DOI: https://doi.org/10.1016/j.cell.2021.05.002
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Danko+, "A global metagenomic map of urban microbiomes and antimicrobial resistance", Cell, 2021

SAFARI
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https://www.cell.com/cell/fulltext/S0092-8674(21)00585-7

Plague in New York Subway System?

»},ﬁ Harvard Health Publishing
¥ HARVARD MEDICAL SCHOOL

Trusted advice for a healthier life

Plague (Yersinia Pestis)

What Is It?

Published: December, 2018

Plague is caused by Yersinia pestis bacteria. It can be a life-threatening infection if not
treated promptly. Plague has caused several major epidemics in Europe and Asia over the
last 2,000 years. Plague has most famously been called "the Black Death" because it can
cause skin sores that form black scabs. A plague epidemic in the 14th century killed more
than one-third of the population of Europe within a few years. In some cities, up to 75% of
the population died within days, with fever and swollen skin sores.

SAFARI +



Plague in New York Subway System?

. &he New York Times
P I ague ( Ye rsii Bubonic Plague in the Subway
System? Don’t Worry About It

What s It?

Published: December, 2018

Plague is caused by Yersinia
treated promptly. Plague h:
last 2,000 years. Plague has
cause skin sores that form k&
than one-third of the popul

the population died within

In October, riders were not deterred after reports that an Ebola-infected man had ridden
the subway just before he fell ill. Robert Stolarik for The New York Times

https://www.nytimes.com/2015/02/07/nyregion/bubonic-plague-in-
the-subway-system-dont-worry-about-it.html

The findings of Yersinia Pestis in the subway received wide coverage in the lay
press, causing some alarm among New York residents

SAFARI 4


https://www.nytimes.com/2015/02/07/nyregion/bubonic-plague-in-the-subway-system-dont-worry-about-it.html
https://www.nytimes.com/2015/02/07/nyregion/bubonic-plague-in-the-subway-system-dont-worry-about-it.html

Failure of Bioinformatics

nature —
bipteehnology

CRISPR sndonucieases pot on bae
7)o ed dopaminerpic NeLromE _/
Geretic Cocall desgn i Moy

data. Rob Knight, a professor in the department of pediatrics at the
University of California, San Diego, calls this type of error “a failure of
bioinformatics” in that Mason had assumed the gene fragments were

unique to the pathogens, when in fact they can also be detected in other

Living in @ microbial world
Charles Schmidt

Nature Biotechnology, volume 35, pages401-403 (2017)
https://www.nature.com/articles/nbt.3868

SAFARI s


https://www.nature.com/articles/nbt.3868
https://www.nature.com/articles/nbt.3868

CAMI Consortium

F. Meyer, A. Fritz, Z.L. Deng, D. Koslicki, A. Gurevich, G. Robertson, Mohammed
Alser, and others

“Critical Assessment of Metagenome Interpretation - the second round of
challenges”, Nature Methods, 2022

[Source Code]

nature methods ANALYSIS

https://doi.org/10.1038/541592-022-01431-4

Analysis | Open Access | Published: 08 April 2022

Critical Assessment of Metagenome Interpretation:
the second round of challenges

Fernando Meyer, Adrian Fritz, ... Alice Carolyn McHardy + Show authors

Nature Methods 19, 429-440 (2022) | Cite this article

7302 Accesses | 79 Altmetric | Metrics
SAFARI 46



https://www.biorxiv.org/content/10.1101/2021.07.12.451567v1.abstract
https://www.biorxiv.org/content/10.1101/2021.07.12.451567v1.abstract
https://github.com/CAMI-challenge/second_challenge_evaluation

Metalign

Nathan LaPierre, Mohammed Alser, Eleazar Eskin, David Koslicki, Serghei Mangul
“Metalign: efficient alignment-based metagenomic profiling via containment min hash”
Genome Biology, September 2020.

[Talk Video (7 minutes) at ISMB 2020]

[Source code]

Genome Biology

Home About Articles Submission Guidelines

Software | Open Access | Published: 10 September 2020

Metalign: efficient alignment-based metagenomic
profiling via containment min hash

Nathan LaPierre &, Mohammed Alser, Eleazar Eskin, David Koslicki & & Serghei Mangul

Genome Biology 21, Article number: 242 (2020) | Cite this article
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https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02159-0
https://www.youtube.com/watch?v=dh3RHrkbaZA
https://github.com/nlapier2/Metalign

MiCoP

Nathan LaPierre, Serghei Mangul, Mohammed Alser, Igor Mandric, Nicholas C. Wu,

David Koslicki & Eleazar Eskin
“MiCoP: microbial community profiling method for detecting viral and fungal organisms

in metagenomic samples”
BMC Genomics, June 2019.
[Source code]

K BMC Part of Springer Nature

BMC Genomics

Research | Open Access | Published: 06 June 2019

MiCoP: microbial community profiling method for
detecting viral and fungal organisms in
metagenomic samples

Nathan LaPierre, Serghei Mangul &4, Mohammed Alser, Igor Mandric, Nicholas C. Wu, David Koslicki
& Eleazar Eskin

BMC Genomics 20, Article number: 423 (2019) | Cite this article
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https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-5699-9
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-5699-9
https://github.com/smangul1/MiCoP

How About Reliability?
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Challenging Environment in Outer Space

v \ -
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S L/

S A FA R l https://spaceref.com/space-stations/nasa-space-station-on-orbit-status-6-
august-2020-working-in-the-kibo-laborator


https://spaceref.com/space-stations/nasa-space-station-on-orbit-status-6-august-2020-working-in-the-kibo-laboratory/
https://spaceref.com/space-stations/nasa-space-station-on-orbit-status-6-august-2020-working-in-the-kibo-laboratory/

Intelligent Architecturer

FPGA

Modern systems

Sequencing
Machine

Heterogeneous
Processors and
Accelerators

Persistent Memory/Storage
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Intelligent Architecturer

FPGAs

Modern systems

guencing
Machine

Persistent Memory/Storage

(Gevriea bb;e) GPUs
SAFARI https://nanoporetech.com/products/smidgion >4
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Privacy-Preserving Genome Analysis?

Ba0s -__} 2 m 3

ﬂ oY ".@ Matching the Inferring the
"‘.’00 demographic data real identity 4
@ C &N with their - of the Getting the
\\ x | correspondences unknown family tree of
in metadata Real identity of the  donor of the the victim.

genetic record’s owner genetic

1

Downloading the
anonymized records that
contain demographic data

information of the known
and unknown members
that may not publish

their genomes at all

Victim
e Public records ( ) AT, Online, public
e Social media sites genealogical databases
o Voter registration forms
ﬁ Inferring the genetic JR— ‘

Real identity of the
genetic record’s owner

Online, public genetic databases with (Victim & Kins)

anonymized records Unauthorized party

(Adversary)

Fig.5. A completion attack.

Alser+, "Can you really anonymize the donors of genomic data in today’s digital
world?" 10th International Workshop on Data Privacy Management (DPM), 2015.

SAFARI >



https://link.springer.com/chapter/10.1007/978-3-319-29883-2_16
https://link.springer.com/chapter/10.1007/978-3-319-29883-2_16

Can you Really Anonymize the Donors?

(Position Paper) Can You Really Anonymize the
Donors of Genomic Data in Today’s Digital World?

Mohammed Alser, Nour Almadhoun, Azita Nouri, Can Alkan, and Erman Ayday

Computer Engineering Department, Bilkent University, 06800 Bilkent, Ankara, Turkey

Abstract. The rapid progress in genome sequencing technologies leads to avail-
ability of high amounts of genomic data. Accelerating the pace of biomedical break-
throughs and discoveries necessitates not only collecting millions of genetic samples
but also granting open access to genetic databases. However, one growing concern is
the ability to protect the privacy of sensitive information and its owner. In this work,
we survey a wide spectrum of cross-layer privacy breaching strategies to human
genomic data (using both public genomic databases and other public non-genomic
data). We outline the principles and outcomes of each technique, and assess its tech-

nological complexity and maturation. We then review potential privacy-preserving

countermeasure mechanisms for each threat. mﬁm ZU 1 S

Keywords: Genomics, Privacy, Bioinformatics
Vienna, Austria
September 21-22, 2015

Alser+, "Can you really anonymize the donors of genomic data in today’s
digital world?" 10th International Workshop on Data Privacy Management
(DPM), 2015.
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https://link.springer.com/chapter/10.1007/978-3-319-29883-2_16
https://link.springer.com/chapter/10.1007/978-3-319-29883-2_16

Privacy-Preserving DNA Test

Our DNA Test, Reports, and Technology

v Whole Genome Sequencing. Decode 100% of your DNA with Whole

Genome Sequencing and fully unlock your genetic blueprints.

Privacy First DNA Testing. Begin your journey of discovery without

risking the privacy of your most personal information.

Nebula Research Library. Receive new reports every week that are

based on the latest scientific discoveries.

Genome Exploration Tools. Use powerful, browser-based genome

exploration tools to answer any questions about your DNA.

Deep Genetic Ancestry. Discover more about your ancestry with full Y

chromosome and mitochondrial DNA sequencing and analysis.

Genomic Big Data Access. Download your FASTQ, BAM, and VCF files and

dive deeper into your Whole Genome Sequencing data.

Ready for Diagnostics. Our Whole Genome Sequencing data is of the

highest quality and can be used by physicians and genetic counselors.

SAFARI https:

The futureof
health is in e
your DNA.

mmcﬂm;cs

30x Whole Genome $299

. Normally $4666
Sequencing DNA Test "™V “~

A genetic test that decodes 100% of your DNA with
very high accuracy. 30x Whole Genome
Sequencing offers the best value for money and is
the best choice for most people.

100x Whole Genome $999

. Normally $3666
SequenCIng DNA TeSt Save 70%!

A genetic test that decodes 100% of your DNA with
extremely high accuracy. 100x Whole Genome
Sequencing is recommended for the discovery of
rare genetic mutations.



https://nebula.org/whole-genome-sequencing/

We Need Faster & Scalable Genome Analysis

Understanding genetic variations Predicting the presence and relative
abundances of microbes in a sample

20-0

e, -
-

Rapid surveillance of disease outbreaks Developing personalized medicine

SAFARI And many other applications ... >8



Applications are only
limited by our imagination

SAFARI



Fundamentally New Storage Architectures

215,000 terabytes of data stored
in a single gram of DNA

“A DNA-of-things storage architecture to create materials with embedded
memory”, Nature Biotechnology, 2020
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https://www.nature.com/articles/s41587-019-0356-z?nature.com
https://www.nature.com/articles/s41587-019-0356-z?nature.com

New Personalized Shopping Paradigm

—

-

SAFARI  https://www.dnanudge.com/


https://www.dnanudge.com/

Achieving Intelligent Genome Analysis?

How and where to enable
fast, accurate, cheap,

privacy-preserving, and exabyte scale

analysis of genomic data?

SAFARI 62



Agenda for Today

s What is Genome Analysis?
s What is Intelligent Genome Analysis?

= How we Analyze Genome?
= What are the Barriers to Enabling Intelligent Analyses?

= Algorithmic & Hardware Acceleration
o Seed Filtering Technique
a Pre-alignment Filtering Technique
o Read Alignment Acceleration

s Where is Genomic Analyses Going Next?

SAFARI
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How to Analyze a Genome?

NO

machine gives the complete
sequence of genome as output

>CCTCCTCAGTGCCACCCAGCCCACTGGCAGCTCCCAAACAGGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTGAGGTGTCAAG
GACCTAAACTAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTT
CATGTCAAGGACCTAATGTGCTAAACAGCACTTTTTTGACCATTATTTTGGATCTGAAAGAAATCAAGAATAAATGAAGGACTTGATACATTG
GAAGAGGAGAGTCAAGGACCTACAGAAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAA
ACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCTGTGTTGCAGGTCTTCTTGCATTTCCCTGTCAAAAGAAAAAGAATTTAAAATTT
AAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCAGGCCAAGAGTTGCAAAAAAAAAAAAAGAAAAA
GAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTAGCCAGAATGG
TTGTGGGATGGGAGCCTCTGTGGACCGACCAGGTAGCTCTCTTTTCCACACTGTAGTCTCAAAGCTTCTTCATGTGGTTTCTCTGAGTGAAA
AAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTTTTCATGTCAAGGACC
TAATGTAGCTATACTGAACGTTATCTAGGGGAAAGATTGAAGGGGAGCTCTAAGGTCAACACACCACCACTTCCCAGAAAGCTTCTTCA

SAFARI 64




How to Analyze a Genome?

NO

machine gives the complete
sequence of genome as output

>CCT¢ CAAG
GACC TCTT
CATGT _ATTG
GAAC AAAA
ACTA ATTT
AAGT. AAAA
GAAA ATGG
TG S S L L L o oo sl e s CYAVAYAN

AAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTT AAGTAATTCTTTG AAAAAAACTAATTTCTAAG CTTTTTCATGTCAAGGACC
TAATGTAGCTATACTGAACGTTATCTAGGGGAAAGATTGAAGGGGAGCTCTAAGGTCAACACACCACCACTTCCCAGAAAGCTTCTTCA......
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Intelligent Genome Analysis

Mohammed Alser, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao,
Gagandeep Singh, Juan Gomez-Luna, Onur Mutlu

“From Molecules to Genomic Variations: Intelligent Algorithms and Architectures for
Intelligent Genome Analysis”

Computational and Structural Biotechnology Journal, 2022

[Source code]

JJJJJJJ
110101001 @R 01010810

wgpoogpoodg BTOTECHNOLOGY

01010101001 010108010
uoxowlooxMxo JOURNAL

journal homepage: www.elsevier.com/locate/csbj e

& 0 =
010 10101010010 St
ooy oo COMPUTATIONAL g AR
1048101001 {ib101014M 1 ill SR
ofibioio:focofllic ANDSTRUCTURAL TR

Review

From molecules to genomic variations: Accelerating genome analysis via = M)
intelligent algorithms and architectures ety

Mohammed Alser *, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao, Gagandeep Singh,
Juan Gomez-Luna, Onur Mutlu *

ETH Zurich, Gloriastrasse 35, 8092 Ziirich, Switzerland
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https://arxiv.org/abs/2205.07957
https://arxiv.org/abs/2205.07957
https://github.com/CMU-SAFARI/Molecules2Variations

DNA Under Electron Microscope

human chromosome #12
from Hela’s cell

SAFARI
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Untangling Yarn Balls & DNA Sequencing
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Genome Sequencer 1s a Chopper

-

Genome Analysis Pipeline e T =i

(

Genomic Sample Sequencing Machine Reads

CCCCCCTATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACGCCCCTACGTA

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

TATATATACGTACTAGTACGT
ACGTTTTTAAAACGTA

TATATATACGTACTAGTACGT

ACGACGGGGAGTACGTACGT

\_

\

il
Read Mapping [ D

J  Genomic Variants

nge :
1x1012 bases
(G| T|

44 hours’

<

6 <1000 $

* NovaSeq 6000

SAFARI
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Genome Sequencer 1s a Chopper

Genome Analysis Pipeline el (TR il )

== Read Mapping |===p _..n.j

Genomic Sample Sequencing Machine Reads \_ _J/  Genomic Variants

Current sequencing machine provides
small randomized fragments
of the original DNA sequence

Alser+, "Technology dictates algorithms: Recent developments in read alignment”, Genome Biology,
2021
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https://arxiv.org/abs/2003.00110

Genome Analysis in Real Life

> R |
Chopped Wm

DNA ]
Raw Sequencing
Data

Fragments

Sample Collection /

) 2w 2
\-%\C‘ e ? % Computational

Steps

Sequencing

DNA
Molecule

Genomic Analyses

Library
Preparation

71
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Sequencing Technologies

... and more! All produce data with different properties.
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Oxford

Oxtford Nanopore Sequencers {JNANOPORE

MinlON Mk1B MinlON Mk1C GridlON Mk1 PromethlON 24/48

MinION MinION . PromethION PromethION
Mk1B Mkic  GridION Mki 24 48

Read length

Yield per flow cell

Number of flpw 24 48
cells per device

Yield per device <250 Gb <5.2Tb <10.5Tb

Starting price $49,995 $195,455 $327,455

SAFARI https://nanoporetech.com/products/comparison 73



https://nanoporetech.com/products/comparison

[llumina Sequencers

llumina

@

|
-

n
—
| —

iSeq 100 MiniSeq MiSeq NextSeq 550 NextSeq 2000 NovaSeq 6000
Run time 9.5-19 hrs 4-24 hrs 4-55 hrs 12-30 hrs 24-48 hrs 13-44 hrs
Max. reads 4 million | 25 million | 25 million | 400 million | 1 billion | 20 billion
per run
Max. read 2 x 150bp | 2x 150bp | 2 x300bp | 2x 150bp | 2 x 150 bp | 2 x 250
length
Max. output 1.2 Gb 7.5 Gb 15 Gb 120 Gb 300 Gb 6000 Gb
Estimated
price $19,900 $49,500 $128,000 $275,000 $335,000 $985,000

74
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Ditterent Raw Sequencing Data

IHlumina

Multiple images

= I .BCL/.CBCL

SAFARI

ONT

Squiggle

= I .FASTS5

PacBio

L =
s
A
i
"

30-hour movie

= I .BAM



How Does Illumina Machine Work?

Optical o
[

Sgnsor .
€

Glass flow
Il surfac
H /H
N N—He---Q N PN
- \ Nﬂ L 77\
/N /o N------ H—N \ \1{ 9 N—H N G
N N N >— I\i’"
I\ H,N—H ------- o
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How Does Illumina Machine Work?

A G
A A c C
A GA CAr Cc - g
AC p A C cA AG cT G T
T
cGc ©CGGC T Gt T A A
GTGGTTGGATTACC
Optical T L
cG G Gg -
Sensor G pd GT .AG gA C =
r ¥ JTc

«©

Billions of Short Reads
"ATATATACGTACTAGTACGT

TTTAGTACGTACGT
ATACGTACTAGTACGT

CGCCCCTACGTA

ACGTACTAGTACGT

TTAGTACGTACGT

Glass flow
cell surface

(6)
(1)
(A
C
A

TACGTACTAAAGTACGT
H A A\TACGTACTAGTACGT
NN /“Q_f """" " TTTAAAACGTA
/€ ‘N—H------- e\ ~ CGTACTAGTACGT
<O H—N%\ 2 Q) ”ﬁN GGGAGTACGTACGT *
— e
o FOR DNA fragment = Read
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How Does Illumina Machine Work?

A A A G
[ ) T
= G G G TCGT T , A
GTg GTTG gA Tt A
- A AC pA oG c ©

Check Illumina virtual tour:

https://emea.illumina.com/systems/sequencing-platforms/iseq/tour.html

N N /jz_f """" N -_ TTTAAAACGTA
{ 7\ Jgm\ GTACTAGTACGT
o /Ng,w ------ H—f}_:; ag O NH ”ﬁN GGGAGTACGTACGT 4
— e
o T DNA fragment = Read
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How Does Nanopore Machine Work?

graphene

nanopore'\ l { A
+
s

% XX XXX XXX
606000000000 000/A 0000

»
>

Events

Current (A)

Sequence C T ATG _G

= Nanopore is a hano-scale hole (<20nm).

= In nanopore sequencers, an ionic current passes through the nanopores

= When the DNA strand passes through the nanopore, the sequencer
measures the the change in current

= This change is used to identify the bases in the strand with the help of
different electrochemical structures of the different bases

SAFARI

Figure is adapted from: https://phys.org/news/2013-12-gene-sequencing-future.html



https://phys.org/news/2013-12-gene-sequencing-future.html

How Does Nanopore Machine Work?

___________________________ ..
o pare A ‘
gan%pore l /4 DNA
T -\ + ) Strand

Check Nanopore virtual tour:

https://nanoporetech.com/resource-centre/minion-video

measures the the chaﬁge in current
This change is used to identify the bases in the strand with the help of
different electrochemical structures of the different bases

SA F AR' Figure is adapted from: https://phys.org/news/2013-12-gene-sequencing-future.html



https://phys.org/news/2013-12-gene-sequencing-future.html
https://nanoporetech.com/resource-centre/minion-video

Sequencing in Action

Chemistry type:

R10.4.1 v

Pack size:

MinION

Portable DNA/RNA sequencing for anyone

Select ... v

1 Flow cell $900.00
$900.00 each

SpotON
12 Flow cells $9,480.00 'J FAF13R20 B

$790.00 each

SAFARI https://store.nanoporetech.com/flow-cell-r9-4-1.html 81



Machine Learning for Nanopore Machine

Wan+

“"Beyond sequencing: machine learning algorithms extract biology
hidden in Nanopore signal data”

Trends in Genetics, October 25, 2021

Trends in

Genetics ¢ CelPress

Beyond seguencing: machine learning
algorithms extract biology hidden in Nanopore
signal data

Yuk Kei Wan, "2 Christopher Hendra, ' Ploy N. Pratanwanich, **° and Jonathan Géke @ 6
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https://www.cell.com/trends/genetics/pdf/S0168-9525(21)00257-2.pdf
https://www.cell.com/trends/genetics/pdf/S0168-9525(21)00257-2.pdf

Common Disadvantages!

Regardless the sequencing machine,

reads still lack information about their order and location

(which part of genome they are originated from)

Billions of Short Reads
ATATATACGTACTAGTACG

AGTACGTACG
________ L ATACGTACTAGTACG

ACGTACTAGTACG

AGTACGTACG
ACGTACTAAAGTACG

[ TACGTACTAGTACG
AAAACGTA

GTACTAGTACG

GGGAGTACGTACG

SAFARI 83



Solving the Puzzle

w
Reference / * .

of

genome / o .
Reads :

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

SAFARI 54


https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

HTS Sequencing Output

Small pieces of a puzzle Large pieces of a puzzle
short reads (Illumina) long reads (ONT & PacBio)

* ' I
S

\

Which sequencing technology is the best?

1 100-300 bp 1 500-2M bp
U low error rate (~0.1%) U high error rate (~15%)

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/
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https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

HiF1 Reads (PacBio)

o

100%
But still very
expensive!
o
o
>
O
<
80%
0 Read Length (kb) 50

Wenger+, "Accurate circular consensus long-read sequencing improves variant
detection and assembly of a human genome", Nature Biotechnology, 2019

https://labs.wsu.edu/genomicscore/illumina-sequencing/ 86
SAFARI https://pacbio.gs.washington.edu/



https://www.nature.com/articles/s41587-019-0217-9
https://www.nature.com/articles/s41587-019-0217-9
https://labs.wsu.edu/genomicscore/illumina-sequencing/
https://pacbio.gs.washington.edu/

Changes in sequencing technologies
can render some
read mapping algorithms irrelevant
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Read Mapping in 111 pages!
In-depth analysis of 107 read mappers (1988-2020)

Mohammed Alser, Jeremy Rotman, Dhrithi Deshpande, Kodi Taraszka, Huwenbo
Shi, Pelin Icer Baykal, Harry Taegyun Yang, Victor Xue, Sergey Knyazev, Benjamin D.
Singer, Brunilda Balliu, David Koslicki, Pavel Skums, Alex Zelikovsky,

Can Alkan, Onur Mutlu, Serghei Mangul

"Technology dictates algorithms: Recent developments in read alignment”

Genome Biology, 2021

[Source code]

Alser et al. Genome Biology (2021) 22:249

https://doi.org/10.1186/513059-021-02443-7 Geno me B|O | Ogy

Technology dictates algorithms: recent ")
developments in read alignment

updates
Mohammed Alser'*", Jeremy Rotman®", Dhrithi Deshpande®, Kodi Taraszka®, Huwenbo Shi®’, Pelin Icer Baykal®,
Harry Taegyun Yang*®, Victor Xue”, Sergey Knyazev®, Benjamin D. Singer'®'"'? Brunilda Balliu™,
David Koslicki"*'>'®, Pavel Skums® Alex Zelikovsky®'’, Can Alkan®'®, Onur Mutlu'**" and Serghei Mangul®™!
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https://arxiv.org/abs/2003.00110
https://github.com/Mangul-Lab-USC/review_technology_dictates_algorithms

Looking forward,
Will we be able to read
the entire genome sequence?

SAFARI
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Agenda for Today

s What is Genome Analysis?
s What is Intelligent Genome Analysis?

= How we Analyze Genome?
= What are the Barriers to Enabling Intelligent Analyses?

= Algorithmic & Hardware Acceleration
o Seed Filtering Technique
a Pre-alignment Filtering Technique
o Read Alignment Acceleration

s Where is Genomic Analyses Going Next?

SAFARI 20



Significant barriers
to intelligent analyses
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Significant Barriers to Intelligent Analyses

1. Performance gap between data generation and data
processing

SAFARI 72



Lack of Spectalized Compute Capability

Specialized Machine General-Purpose Machine
for Sequencing for Analysis
FAST SLOW

SAFARI 93



Analysis 1s Bottlenecked in Read Mapping!!

Human
genome

32 CPU hours
on a 48-core processor

Human whole
genomes
at 30x coverage

in about 2 days

Illumina NovaSeq 6000 ‘

Read Mapping = Others

71%

SA FARI Goyal+, "Ultra-fast next generation human genome sequencing data processing using DRAGENTM bio-IT 94
processor for precision medicine”, Open Journal of Genetics, 2017.



https://www.scirp.org/journal/paperinformation.aspx?paperid=74603
https://www.scirp.org/journal/paperinformation.aspx?paperid=74603

Significant Barriers to Intelligent Analyses

1. Performance gap between data generation and data
processing

2. Expensive data movements

SAFARI 75



Data Movement Dominates Performance

= Data movement dominates performance and is a major
system energy bottleneck (accounting for 40%-62%)

Data Movement

o
o\

Sequencing Storage (SSD/HDD) Main Memory Microprocessor
Machine

Single memory request consumes >160x-800x more
energy compared to performing an addition operation

* Boroumand et al., “"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
* Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” IISWC 2013
* Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” IISWC 2014
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Data analysis
IS performed
far away from the data

SAFARI



Significant Barriers to Intelligent Analyses

1. Performance gap between data generation and data
processing

2. Expensive data movements

3. Neglecting metadata
1. Types of sequencing data
2. Properties of intermediate data
3. Quality of data
4. Genome structure

SAFARI 78



Significant Barriers to Intelligent Analyses

1. Performance gap between data generation and data
processing

2. Expensive data movements
3. Neglecting metadata

4. And many more barriers specific to each computational
step ...

SAFARI 7



Several Genome Analysis Pipelines

Sequencing Technology:
* lllumina

* ONT

*  PacBio (HiFi)

Species:

* E.Coli
Human
Yeast
Zebra Fish
Mice
Fruit Fly

Basecalling [ 2

]

Genome Analysis

Species: E’ * Kraken2

* E.Coli * Metalign

®* Human e  MiCoP

* Yeast

® Zebra Fish

. i Taxonomy
L]

Fruit Fly

‘ Profiling

De novo Assembler (Long Reads):

Reference Sketching/
4

Genomes Indexing \ . Canu
® Miniasm (uses Minimap2)
De novo Assembler (Short Reads):
Mappin * ABYSS
pp g ® SPAdes (small genomes)
R d S t Read ’ Read Mapper: .
ead Se m) : * BWA-MEM2 -
Correction - Minimap?
optional e NGM-LR
Coverage: Read Corrector: * Bowtie2 Assembly Polisher:
*  Low 2x-30x ¢ HALC * Apollo
* Moderate 30x - 100x ¢ LsC * Racon
* High>250x * Hercules Variant «  Pilon
* LoRDEC . * Quiver (PB reads)
Read Length: ¢ LoRMA Calllng * Arrow (PB reads, Not
*  Short 100bp - 250bp * Proovread published yet)
*  Long 200bp — 2Mbp * ColorMap Variant Caller: « Freebaves NanoPolish (ONP
(>200bp) e LuMPY o DELLY ¥ reads)
* HiFi 10K-20Kbp L.
* VariationHunter o  pjatypus
* GATK * SAMtools
* TaRDiS ® Genome STRiP
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Challenges in Genome Analysis

[ Basecalling: Each sequencing technology provides different
types of raw sequencing data.

A Error correction & quality control: Sequencing error rates
vary from 0.1%-15%

 Read mapping: Regardless the sequencing machine, reads
are still small randomized fragments of the original DNA
sequence with unknown order and location.

A Variant calling: Small & complex genomic differences need
to be maintained.

[ Metagenomic profiling: The sample donor is unknown.
SAFARI 101



Technology Dictates Algorithm Complexity

Short Reads (lllumina)

Sequencing Basecalling Quality Control n Read Mapping Variant Calling
Library preparation: 6.5 hours
Sequencing: 68.2 Gb/hour 104.4 Gb/hour 1339.2 Gb/hour 0.2 Gb/hour 1.2 Gb/hour

Ultra-long Reads (ONT)

Sequencing Basecalling Quality Control n Read Mapping Variant Calling
Library preparation: 24 hours
Sequencing: 4.1 Gb/hour 0.833 Gb/hour 3420 Gb/hour 1.7 Gb/hour 0.044 Gb/hour

Accurate Long Reads (PacBio)

Sequencing Basecalling Quality Control n Read Mapping Variant Calling
Library preparation: 24 hours
Sequencing: 5.3 Gb/hour 8.3 Gb/hour 1081 Gb/hour 1.4 Gb/hour 1.1 Gb/hour

Alser+, Going From Molecules to Genomic Variations to Scientific Discovery:
Intelligent Algorithms and Architectures for Intelligent Genome Analysis, arXiv 2022

SAFARI 102



https://arxiv.org/abs/2205.07957
https://arxiv.org/abs/2205.07957

Computing System

Technology

Opportunity

Examples

Leiserson+, "There’s plenty of room at the Top: What will drive

computer performance after Moore’s law?", Science, 2020

engineering

Removing software bloat

Tailoring software to
hardware features

New problem domains
New machine models

The Top
01010011 01100011
01101001 01100101 0
01101110 01100011
01100101 00000000
Software Algorithms Hardware architecture
Software performance New algorithms Hardware streamlining

Processor simplification
Domain specialization

Data

Problem

Algorithm

Program/Language

Runtime System
(VM, OS, MM)

ISA (Architecture)

~— TheBottom

for example, semiconductor technology

Microarchitecture

Logic

Devices

Electrons

Richard Feynman, "There's Plenty of Room at the Bottom: An Invitation
to Enter a New Field of Physics”, a lecture given at Caltech, 1959.

SA F A Rl Image source: https://science.sciencemag.org/content/368/6495/eaam9744
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https://www.youtube.com/watch?v=4eRCygdW--c
https://www.youtube.com/watch?v=4eRCygdW--c
https://science.sciencemag.org/content/368/6495/eaam9744
https://science.sciencemag.org/content/368/6495/eaam9744
https://science.sciencemag.org/content/368/6495/eaam9744

Sotftware & Hardware Optimizations

Multiplying Two 4096-by-4096 Matrices

for 1 in xrange (4096) : 1 2 3 7 8 58
for J in. xrange (4090) : [4 5 6 ] 9 10| = [ ]
for k 1in xrange (4090) :
CIil[3] += A[i][k] * P 12
Blk][]J]
Implementation Running time (s) Absolute speedup
Python 25,552.48 1X
Java 2,372.68 11x
C 542.67 47X
Parallel loops 69.80 366x
Parallel divide and conquer 3.80 6,727x
plus vectorization 1.10 23,224x
plus AVX intrinsics 0.41 62,806x
Leiserson+, "There’s plenty of room at the Top: What will drive
computer performance after Moore’s law?", Science, 2020
104
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FASTQ Parsing

Program
fgcnt_rs2_needletail.rs
facnt_c1_kseq.c
facnt_cr1_klib.cr
fgent_nim1_klib.nim
fqcnt_jl1_klib.jl
fgcnt_js1_k8.js
fgcnt_gol.go
faent_lual_klib.lua
facnt_py2_rfq.py

facnt_py2_rfq.py

Language  tgzip (S)  tpiain (S)
Rust 9.3 0.8
C 9.7 1.4
Crystal 9.7 1.5
Nim 10.5 2.3
Julia 11.2 2.9
Javascript 17.5 9.4
Go 19.1 2.8
LuaJIT 28.6 27.2
PyPy 28.9 14.6
Python 42.7 19.1

Comments

needletail; fasta/4-line fastq
multi-line fasta/fastq

kseq.h port

kseq.h port

kseq.h port

kseq.h port

4-line only

partial kseq.h port

partial kseq.h port

partial kseq.h port

SAFARI
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https://github.com/lh3/biofast

We need intelligent algorithms
and intelligent architectures
that handle data well

SAFARI



Solving the Puzzle

.FASTA file .FASTQ file

w
Reference / * .

of

genome / o .
Reads :

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/
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Obtaining the Human Reference Genome

GRCh38.p13

Description: Genome Reference Consortium Human Build 38
patch release 13 (GRCh38.p13)

Organism name: Homo sapiens (human)

Date: 2019/02/28

3,099,706,404 bases

Compressed .fna file (964.9 MB)
https://www.ncbi.nlm.nih.gov/assembly/GCF 000001405.39

>NC_000001.11 Homo sapiens chromosome 1, GRCh38.p13 Primary Assembly

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
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https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39

Obtaining .FASTQ Files

= https://www.ncbi.nim.nih.gov/sra/ERR240727

« NCBI Resources (¥ How To (¥

SAFA

SRA |SRA vl

Advanced

0 COVID-19 is an emerging, rapidly evolving situation.
Public health information (CDC) | Research information (NIH) | SARS-CoV-2 data (NCBI) | Prevention and treatment information (HH

Full + Send to: =

ERX215261: Whole Genome Sequencing of human TSI NA20754
1 ILLUMINA (lllumina HiSeq 2000) run: 4.1M spots, 818.7M bases, 387.2Mb downloads

Design: lllumina sequencing of library 6511095, constructed from sample accession SRS001721 for study accession SRP000540. This is part of an
lllumina multiplexed sequencing run (9340_1). This submission includes reads tagged with the sequence TTAGGCAT.

Submitted by: The Wellcome Trust Sanger Institute (SC)

Study: Whole genome sequencing of (TSI) Toscani in Italia HapMap population
PRJNA33847 « SRP000540 * All experiments * All runs

Sample: Coriell GM20754
SAMNO00001273 » SRS001721 « All experiments « All runs
Organism: Homo sapiens

Library:
Name: 6511095
Instrument: lllumina HiSeq 2000
Strategy: WGS
Source: GENOMIC
Selection: RANDOM
Layout: PAIRED
Construction protocol: Standard

Runs: 1 run, 4.1M spots, 818.7M bases, 387.2Mb

Run # of Spots # of Bases Size Published
ERR240727 4,093,747 818.7M 387.2Mb 2013-03-22
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Let’s learn
how to map a read

SAFARI



Read Mapping: A Brute Force Algorithm

Reference

[ ]
Read

Very expensive!
O(nm¥kn)

m: read length
k: no. of reads
. reference genome length

SAFARI 4



Matching Fach Read with Reference Genome

.FASTA file:

>NG 008679.1:5001-38170 Homo sapiens paired box 6 (PAX6)

ACCCT ICATTGACATTTAAACTCTGGGGCAGG I G2AACGCGGCTGTCAGATCT
GCCACTTCCCCTGCCGAGCGGCGGTGAGAAGTGTGGGAACCGGCGCTGCCAGGCTCACCTGCCTCCCCGC
CCTCCGCTCCCAGGTAACCGCC( CCCCGGCCCGGCTCGGGGCCCGCGGGGCCTCTCCGCTG
CCAGCGACTGCTGTCCCCAAATCAAAGCCCGCCCCAAGTGGCCCCGGGGCTTGATTTTTGCTTTTARAAG
GAGGCATACAAAGATGGAAGCGAGTTACTGAGGGAGGGATAGGAAGGGGGGTGGAGGAGGGACTTGTCTT
TGICCGAGTGT_SAAAAGTAGCAJ cTcCTA T CCAGTCCGGCCCT
GAGCTGGGAGTAGGGGGCGGGAGTCTGCTGCTGCTGTCTGCTARAGCCACTCGCGACCGCGARAAATGCA
GGAGGTGGGGACGCACTTTGCATCCAGACCTCCTCTGCATCGCAGTTC. .CGCTTGGGAAAG
TcCGTACCCGCGCCTIIE:.22GACACCCTGCCGCGGGTCGGGCGAGGTGCAGCAGAAGTTTCCC
GCGGTTGCAAAGTGCAGATGGCTGGACCGCAACAAAGTCTAGAGATGGGGTTCGTTTCTCAGAAAGACGC

.FASTQ file:

@HWI-EAS209 0006 FC706VJ:5:58:5894:21141#ATCACG/1
T2 TAAATCT! TTAGATNIGEEEREE NN NNNNNNTAG
+

efcfffffcfeefffcffffffddf feed]'] Ba ~ [YBBBBBBBBBBRTT

SAFARI o




Step 1: Indexing the Reference Genome

I-_f__-

reference genome
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Popular Indexing Technique

Hashing is the most popular
indexing technique for
read mapping since 1988

Alser+, "Technology dictates algorithms: Recent developments in read alignment”,
Genome Biology, 2021

SAFARI 21



https://arxiv.org/abs/2003.00110

Step 1: Indexing the Reference Genome

\ reference genome
\
‘\ Seed=k-mer
\ .
“ee e . 1] 9 ] 16 | 30

Index the first
seed at location 1

2 7 60

5 12

4 10 18 32

6 | 14
*.

seed location at the
reference genome

o
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Genome Index Properties

The index is built only once for each reference.

Seeds can be overlapping, non-overlapping, spaced,
adjacent, Syncmers, Strobemers, BLEND, non-adjacent,

minimizers, compressed, ...
Tool Version Index Size Ind_e xing
Time
mrFAST 2.2.5 16.5 GB 20.00 min
minimap2 0.12.7 7.2 GB 3.33 min
BWA-MEM 0.7.17 4.7 GB 49.96 min

*Human genome = 3.2 GB
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Performance of Human Genome Indexing

I = 1
60 .
» 50 . g
: & o o
L—Q, 40 §
QJ 30 I 1
£
=2 " i O
= ~
G 10 28, S
O k] > ‘.ﬁﬂ"i —
Hashing BWT-FM Other Suffix Hashing _BWT-FM ' Other Suffix
Indexing algorithm Indexing algorithm

Mapper

RMAP
Bowtie
BWA
GSNAP
SMALT
LAST
SNAP
Bowtie2
Subread
HISAT2
minimap2

Alser+, "Technology dictates algorithms: Recent developments in read alignment”,

Genome Biology, 2021

SAFARI
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https://arxiv.org/abs/2003.00110

Step 2: Query the Index Using Read Seeds

seeds

. .
- ' -~
L4 -
E L -
- .
. .
o .
- e
A' ‘

read 1: ccTAGIATAREpCTAQIACET T

read 2. TATcT}acdiackacT Ak cc

read3: ceqreThTAEN AcT ARG T
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Step 2: Query the Index Using Read Seeds

seeds

. .
- ' -~
. .
- ' -
" ~§
o .
’ .~
‘ A

read 1: ccTAGIATAREpCTAQIACET T

read 2. TATcT}acdiackacT Ak cc

read3: ceqreThTAEN AcT ARG T

-
-
-
-
-
-
-
-~
-
-~
-
-
-
-~
e
-

X ¢ « X
1 9 |16 | 30

/seed

N

seed location at the
reference genome /

______ location list
:|o—> 1] 9 | 16 | 30
-—> 2 | 7 | 60
[ e[ 3 [5 12
L S REEEE
_J-—» 6 14,5\

\_

seed from location list from index data structure

read 1 X v x
2 7 60

X «
$—>[ 3] 5[]

reference genome

SAFARI
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Step 2: Query the Index Using Read Seeds
Seeds seed Iocatlon st )
- .

,,,,,,,,,,,,,, 1 16 | 30

We can query the Hash table with
substrings from reads to quickly find a list
of possible mapping locations

read3: GcqrCT k seed location at the
reference genome j

read

X v « X
> 1 [ 9| 16 ] 30 |
seed from location list from index data structure
read 1 X 7 x
2 7 60
X «
> 3| 5 [ 12|

reference genome
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Step 3: Sequence Alignment (Verttication)

CGTTAGTCTA
oloJoflolololofo|lo|o]fo
Cclo|2|2]2|2]2|2]2|2|2]2
Clo|2]3|3[3]|3|3|3|4/4]d4
Tlo|2|3|5]5|5|5|5]|5]|6]6
T o233 |s|2|7|7]|7|7|7]|7
Alo|3 3579999 9]9
Glo|2[4 s |79 ufr|mn||n
Tlo|2]4 6|79 f13{3[13]13
Alo|2]4 6|79 |1n|13]14]14]15
T o204 6|89 |11]|13]14]16]16

.bam/.sam file contains
necessary alignment
information (e.g., type,
location, and number of
each edit)

SAFARI
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Step 3: Sequence Alignment (Verttication)

Edit distance is defined as the minimum number of edits

(i.e. insertions, deletions, or substitutions) needed to make
the read exactly match the reference segment.

organization x operation organization x translation
Ref oIIrganization Ref organiz.ation
Read ation Read tr-an-s.ation
Ref oIIrganization Ref organ.ization
Read oIIr-a----tion Read tr-anII-ation

Edit distance = 7

Ref organization
match )
deletion Read tr-anslation

~ insertion Edit distance = 4

mismatch

SAFARI =t



Popular Algorithms for Sequence Alignment

Smith-Waterman remains
the most popular algorithm
since 1988

Hamming distance is

the second most popular technique
since 2008

Alser+, "Technology dictates algorithms: Recent developments in read alignment”,
SAFAR' Genome BiOIOgy, 2021 132



https://arxiv.org/abs/2003.00110

De Novo Genome Assembly

Reference-free

computationalgenomics.bioinformatics.ucla.edu/portf
olio/david-koslicki-the-cami-project-assessment-of-
computational-techniques-in-metagenomics/
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Read Mapping Execution Time

Collect Minimizers
2%
Collect
Matching
Seeds

>60%

Sorting
Seeds

of the read mapper’s e
execution time is spent
in sequence alighment

Seed
Chaining
16%

minimap2

ONT FASTAQ size: 103MB (151 reads), Mean length: 356,403 bp, std: 173,168 bp, longest length: 817,917 bp
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Computational Cost 1s Mathematically Proven

arXiv.org > c¢s > arXiv:1412.0348 Search...

Help | Advanced

Computer Science > Computational Complexity

[Submitted on 1 Dec 2014 (v1), last revised 15 Aug 2017 (this version, v4)]

Edit Distance Cannot Be Computed in Strongly
Subquadratic Time (unless SETH is false)

Arturs Backurs, Piotr Indyk

The edit distance (a.k.a. the Levenshtein distance) between two strings is defined as the
minimum number of insertions, deletions or substitutions of symbols needed to transform one
string into another. The problem of computing the edit distance between two strings is a
classical computational task, with a well-known algorithm based on dynamic programming.
Unfortunately, all known algorithms for this problem run in nearly quadratic time.

In this paper we provide evidence that the near-quadratic running time bounds known for the
problem of computing edit distance might be tight. Specifically, we show that, if the edit
distance can be computed in time O(n*>~%) for some constant § > 0, then the satisfiability of
conjunctive normal form formulas with N variables and M clauses can be solved in time
MODRI=ON g4 3 constant € > 0. The latter result would violate the Strong Exponential Time
Hypothesis, which postulates that such algorithms do not exist.

SAFARI https://arxiv.org/abs/1412.0348 140



https://arxiv.org/abs/1412.0348

Large Search Space for Mapping Location

CCTATAATACG

OOP—HP—HP>-HO>O

Read

AIignment',."/ of candidate locations
' have high dissimilarity
with a given read

Reference Genome

Cheng et al, BMC bioinformatics (2015)
Xin et al, BMC genomics (2013)

SAFARI 14



Agenda for Today

s What is Genome Analysis?
s What is Intelligent Genome Analysis?

= How we Analyze Genome?
= What are the Barriers to Enabling Intelligent Analyses?

= Algorithmic & Hardware Acceleration
o Seed Filtering Technique
a Pre-alignment Filtering Technique
o Read Alignment Acceleration

s Where is Genomic Analyses Going Next?

SAFARI 142



Accelerating Read Mapping

Genome Analysis Pipeline 4 N\
; Read I
= Mapping =1
— = gooo
Genomic Sample Sequencing Machine Reads Genomic Variants
© Indexing © Pre-Alignment Filtering © sequence Alignment
Reference Genome . Read
— A\ T
k-mers-— % e § L | DL
- — g . BN Programming
Index k-mers "= — ] By T ™ (DP) Matrix
k-mer 2 — \_3a
locations Locating — 8 I. I=.
’ < H Em Output
common k-mers — e 2 Er H
._J 1,46 / ‘ %
3,512 | | | 4 . .
e Reference subsequences extracted ~ SAMfile (alignment score, edit
| ateach common k-mer location ) distance, type and location of each edlt)‘
r N
. ) Accelerating . )
Accelerating Indexing Pre-Alignment Filtering Accelerating Alignment

( g-gram filtering )

i Reducing R
. thenumberofseeds ) (*  pigeonhole principle )
" Reducing data movement | ( Base counting )
9 during indexing )

( Sparse DP )

»

Alser+, “Accelerating Genome Analysis: A Primer on an Ongoing Journey”, IEEE Micro, 2020.
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https://arxiv.org/pdf/2008.00961.pdf

Near-memory Sequence Alignment

Our Contributions GenASM [MICRO 2020]

SeGraM [ISCA 2022]

Specialized Pre-alignment Filtering
Accelerators (GPU, FPGA)

GateKeeper [Bioinformatics'17]

Near-memory/In-memory

Pre-alignment Filtering

GRIM-Filter [BMC Genomics'18]

SneakySnake [IEEE Micro'21]
MAGNET [AACBB'18]

GenASM [MICRO 2020] | \
\ Shouji [Bioinformatics'19]
\
‘. GateKeeper-GPU [arXiv'21]
[
Il' SneakySnake [Bioinformatics'20]

Sequencing Machine Storage (SSD/HDD) Main Memory Microprocessor



Ongoing Directions

Seed Filtering Technique:

o Goal: Reducing the number of seed (k-mer) locations.
Heuristic (limits the number of mapping locations for each seed).
Supports exact matches only.

Pre-alignment Filtering Technique:

o Goal: Reducing the number of /nvalid mappings (>E).
Supports both exact and inexact matches.
Provides some falsely-accepted mappings.

Read Alignment Acceleration:
o Goal: Performing read alignment at scale.

Limits the numeric range of each cell in the DP table and hence
supports limited scoring function.

May not support backtracking step due to random memory accesses.
SAFARI 145



Ongoing Directions

Seed Filtering Technique:
o Goal: Reducing the number of seed (k-mer) locations.

Heuristic (limits the number of mapping locations for each seed).
Supports exact matches only.

Pre-alignment Filtering Technique:

o Goal: Reducing the number of /nvalid mappings (>E).
Supports both exact and inexact matches.
Provides some falsely-accepted mappings.

Read Alignment Acceleration:
o Goal: Performing read alignment at scale.

Limits the numeric range of each cell in the DP table and hence
supports limited scoring function.

May not support backtracking step due to random memory accesses.
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FastHASH

= Goal: Reducing the number of seed (k-mer) locations.

o Heuristic (limits the number of mapping locations for each
seed).

o Supports exact matches only.

Xin et al. BMC Genomics 2013, 14(Suppl 1):513
http://www.biomedcentral.com/1471-2164/14/51/513
P BMC
Genomics

Accelerating read mapping with FastHASH

Hongyi Xin', Donghyuk Lee', Farhad Hormozdiari®, Samihan Yedkar', Onur Mutlu'", Can Alkan®

From The Eleventh Asia Pacific Bioinformatics Conference (APBC 2013)
Vancouver, Canada. 21-24 January 2013

SAFARI 147




Key Observations

Observation 1 (Adjacent k-mers)

o Key insight: Adjacent k-mers in the read should also be
adjacent in the reference genome

o Key idea: 1) sort the location list based on their number of
locations and 2) search for adjacent locations in the k-mers’

location lists
AAAAAAA\A&A\ACCEC_JCC_CC_CCC_JU [TTTTTTTTT | read
Valid mapping Invalid mapping Relerence genome
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Key Observations

Observation 1 (Adjacent k-mers)

o Key insight: Adjacent k-mers in the read should also be
adjacent in the reference genome

o Key idea: 1) sort the location list based on their number of
locations and 2) search for adjacent locations in the k-mers’

location lists

Observation 2 (Cheap k-mers)

o Key insight: Some k-mers are cheaper to verify than others
because they have shorter location lists (they occur less
frequently in the reference genome)

o Key Idea: Read mapper can choose the cheapest k-mers and
verify their locations

SAFARI 149



Cheap K-mer Selection

= occurrence threshold = 500 read
326 338 350 376 388
Cafions1 1470
2 loc. 2 loc.
Nﬂmber of Logatijuns—
Cheapest 3 k-mers 1K loc. 2K loc. 1K loc.
Expensive 3 k-mers
Previous work needs FastHASH verifies only:

to verify:
» 8 locations

3004 locations

SAFARI 150



FastHASH Conclusion

Problem: Existing read mappers perform poorly in mapping
billions of short reads to the reference genome, in the
presence of errors

Observation: Most of the verification calculations are
unnecessary - filter them out

Key Idea: To reduce the cost of unnecessary verification
o Select Cheap and Adjacent k-mers.

Key Result: FastHASH obtains up to 19x speedup over the
state-of-the-art mapper without losing valid mappings
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More on FastHASH

= Download source code and try for yourself
o Download link to FastHASH

Xin et al. BMC Genomics 2013, 14(Suppl 1):513
http://www.biomedcentral.com/1471-2164/14/51/513
P BMC
Genomics

Accelerating read mapping with FastHASH

Hongyi Xin', Donghyuk Lee', Farhad Hormozdiari?, Samihan Yedkar', Onur Mutlu"", Can Alkan®

From The Eleventh Asia Pacific Bioinformatics Conference (APBC 2013)
Vancouver, Canada. 21-24 January 2013
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http://mrfast.sourceforge.net/

Ongoing Directions

Seed Filtering Technique:

o Goal: Reducing the number of seed (k-mer) locations.
Heuristic (limits the number of mapping locations for each seed).
Supports exact matches only.

Pre-alignment Filtering Technique:
o Goal: Reducing the number of /nvalid mappings (>E).

Supports both exact and inexact matches.
Provides some falsely-accepted mappings.

Read Alignment Acceleration:
o Goal: Performing read alignment at scale.

Limits the numeric range of each cell in the DP table and hence
supports limited scoring function.

May not support backtracking step due to random memory accesses.
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Pre-alignment Filtering Technique

Sequence Alignment is expensive

Our goal is to reduce the need for dynamic
programming algorithms

SAFARI 154



Key Idea

L Genomic Strings ]

a

of differences exceeds a
threshold.

-

Ignore them if the number

)

\*5\\\}"\/ \
e om
Y g )

Find number and location

-

of differences?

)

SAFARI
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Ideal Filtering Algorithm

Step 3

Read
Alignment

1. Filter out most of incorrect mappings.
2. Preserve all correct mappings.
3. Do it quickly.
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GateKeeper

Bioinformatics ISCB?

INTERNATIONAL SOCIETY FOR
COMPUTATIONAL BIOLOGY

Article Navigation

GateKeeper: a new hardware architecture for accelerating
pre-alignment in DNA short read mapping @

Mohammed Alser ™, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur Mutlu ™, Can Alkan

Bioinformatics, Volume 33, Issue 21, 01 November 2017, Pages 3355-3363,
https://doi.org/10.1093/bioinformatics/btx342
Published: 31 May 2017 Article history v

Alser+, "GateKeeper: A New Hardware Architecture for Accelerating

Pre-Alignment in DNA Short Read Mapping”, Bioinformatics, 2017.

SAFARI
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https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf

GateKeeper

Key observation:

o If two strings differ by £ edits, then every bp match can be
aligned in at most 2 £ shifts.

Key idea:
o Compute “Shifted Hamming Distance”: AND of 2£+1 Hamming
vectors of two strings, to identify invalid mappings
Uses bit-parallel operations that nicely map to FPGA architectures

Key result:

o GateKeeper is 90x-130x faster than SHD (Xin et al., 2015) and
the Adjacency Filter (Xin et al., 2013), with only a 7% false
positive rate

o The addition of GateKeeper to the mrFAST mapper (Alkan et
al., 2009) results in 10x end-to-end speedup in read mapping
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Hamming Distance (D€

D)

3 matches

5 mismatches

Edit = 1 Deletion

A(IN

Bl|U|IL

[
\NL/
eTy

-
|

[
X

‘-- ——

[
NN

\

T N

B

To cancel the effect of a

2

deletion, we need to shift

in the right direction

%

SAFARI
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Shifted Hamming Distance (Xin+ 2015)

| [|S|IT[A[IN[/B||U|]|L
XOR - ! E i i i E E Edit = 1 Deletion
\ 4 \ 4 [
g :
O(]O}JO[1{J1]/1})1}) = XOR
AND<
1(/1({/1]]0[/0}/0|/0

C°““t{ooo1oooo

7 matches

1 mismatches

SAFARI
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GateKeeper Walkthrough

Generate 2E+1
masks

Amend random zeros: AND all masks,
101 > 111 & 1001 »> 1111 ACCEPT iff number of ‘1" < Threshold

Query :GAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA
Reference :GAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

Hamming Mask :00000000001/0000000000001111111011110001110110101101111111110001000 11011010010101
l1-Deletion Mask :11111111111001111101111
2-Deletion Mask :000000001011011100111111111111101111000111011010110111111111000100
3-Deletion Mask :111111111110111011001101110111011000100100111111111111100101100110

1-Insertion Mask :111111111110111110111111011101100010010011111111111110010110011000

2-Insertion Mask :000000100111110011111111100100011010101001101011111111111110111001 11000111101100

3-Insertion Mask :111111110111011001100011111111101011011111100110010111011111111011 11010111001000

AND Mask :000000000010000000000001000000000000000000000000000000000000000000000000000000000000

11101101001010
10111011101111
11101110111110

155 Our goal to track the diagonally consecutive matches in the
il neighborhood map.

\GAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG

Needleman-Wunsch .
Alignment : | ILEEEEIIT DEEEEEREREEE FPEEREEEE PP EEEEEE P EEE PR PR s P e

\GAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

SAFARI tot




Alignment Matrix vs. Neighborhood Map

Needleman-Wunsch Neighborhood Map
CTATAATACG CTATAATACG
4
Al A jeas
C |- C 0
T T 0
A A 0
T T 0
A A 04 0
T T 0
A A 0
C C 0
G G :

Our goal to track the diagonally consecutive matches in the
neighborhood map.
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Alignment Matrix vs. Neighborhood Map

Needleman-Wunsch Neighborhood Map
TATAATACG TATAATACG
4
A A e
‘ 0
T T 0
A A 0
T T 0
A A 04 0

Independent vectors can be processed in parallel using
hardware technologies
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Our Solution: GateKeeper

st

Alignment ’ IS
Filter ks o 7 g FPGA-based
Alignment Filter.

Low Speed & High Accuracy
Medium Speed, Medium Accurac
High Speed, Low Accuracy

x103

mappings
- oo

x1012

ATATATACG ]
3ACGGGGAGTA A

DOPAPAP-HOD>

E High throughput DNA Read Pre-Alignment Filtering Read Alignment
sequencing (HTS) technologies Fast & Low False Positive Rate Slow & Zero False Positives
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GateKeeper Walkthrough (cont’d)

AND all masks,
ACCEPT iff number of ‘1’ < Threshold

| « (2E)*(ReadLength) 2-AND
operations.

| * (ReadLength/4) 5-input LUT.
log,ReadlLength-bit counter.

Generate 2E+1 Amend random zeros:
NERS 101 > 111 & 1001 »> 1111

 E right-shift registers (length=ReadLength)
« E left-shift registers (length=ReadLength)
« (2E+1) * (ReadLength) 2-XOR operations.

~ ™

Hamming mask

. 01000010101

u 5-input

: L[gT ;’
1111110001&10

<0111100011l10001111

Hamming mask after amending

» (2E+1)*(ReadlLength) 5-input LUT.
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Virtex-7 FPGA Layout

Switch
Matrix

ICLB

couTt

v "

> Slice(1)

Slice(0)

The LUTs in 7 series
FPGAs can be
configured as either a
6-input LUT with one
output, or as two 5-
input LUTs with
separate outputs

CIN CIN
UG474_c1_01_071910
Figure 1-1: Arrangement of Slices within the CLB
Table 2-1: Logic Resources in One CLB
Slices | LUTs | Flip-Flops | Arithmeticand | n. o i ted RAM() | Shift Registers(™
Carry Chains
2 8 16 2 256 bits 128 bits
SAFARI “7 Series FPGAs Configurable Logic Block” User Guide, Xilinx 2016 107



https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf

GateKeeper Accelerator Architecture

= Maximum data throughput =~13.3 billion bases/sec

= Can examine 8 (300 bp) or 16 (100 bp) mappings concurrently at 250 MHz

= Occupies 50% (100 bp) to 919% (300 bp) of the FPGA slice LUTs and registers

Preprocessing Host (CPU) Alignment Filtering (FPGA) EAIignment Verification

(CPU/FPGA)

ornnrnnrnnnns s , ..................... GateKeeper ,,

Read Controller

read#1 read#N

ACTATAATACG

read pairs

(MIFAST 1q #
output) b

Encoder EI¥ oo1

ODOP>PAP>PAP>H0O0>0

’ K Input stream :
. : of binary pairs GateKeeper EEEEE GateKeeper
—ll == B Processing Processing
fir b e eyt o fir b e eyt o E Core #1 » n n n Core #N
- E Accepted Alignments

input reads  reference '

(fastq) genome (.fasta) + (correct & false positives)

*Imap#ﬂj [ Tmap #N]|

PCie

GateKeeper
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5%

PCle Controller, RIFFA, and 10

17.6%,

GateKeeper

FPGA Chip Layout
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GateKeeper: Speed & Accuracy Results

90x-130x faster filter

than SHD (Xin et al., 2015) and the Adjacency Filter (Xin et al., 2013)

4x lower false accept rate

than the Adjacency Filter (Xin et al., 2013)

10x speedup in read mapping

with the addition of GateKeeper to the mrFAST mapper (Alkan et al., 2009)

Freely available online

github.com/BilkentCompGen/GateKeeper

SAFARI b
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More on SHD (SIMD Implementation)

= Download and test for yourself
= https://qithub.com/CMU-SAFARI/Shifted-Hamming-Distance

Bioinformatics, 31(10), 2015, 1553-1560
doi: 10.1093/bioinformatics/btu856

Original Paper OXFORD

Advance Access Publication Date: 10 January 2015

Sequence analysis

Shifted Hamming distance: a fast and accurate
SIMD-friendly filter to accelerate
alignment verification in read mapping

Hongyi Xin'*, John Greth?, John Emmons?, Gennady Pekhimenko?,
Carl Kingsford?®, Can Alkan** and Onur Mutlu®*
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More on GateKeeper

= Download and test for yourself
https://qithub.com/BilkentCompGen/GateKeeper

Bioinformatics ISCB?

INTERNATIONAL SOCIETY FOR
COMPUTATIONAL BIOLOGY

Article Navigation

GateKeeper: a new hardware architecture for accelerating
pre-alignment in DNA short read mapping @

Mohammed Alser &, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur Mutlu ™, Can Alkan

Bioinformatics, Volume 33, Issue 21, 01 November 2017, Pages 3355-3363,
https://doi.org/10.1093/bioinformatics/btx342
Published: 31 May 2017 Article history v

Alser+, "GateKeeper: A New Hardware Architecture for Accelerating Pre-Alignment in DNA
Short Read Mapping”, Bioinformatics, 2017.
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https://github.com/BilkentCompGen/GateKeeper
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf

Can we do better? Scalability?
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Shouji (& 7-)

Bioinformatics, 2019, 1-9

doi: 10.1093/bioinformatics/btz234

Advance Access Publication Date: 28 March 2019
Original Paper

Sequence alignment

Shouiji: a fast and efficient pre-alignment filter
for sequence alignment

Mohammed Alser'?>*, Hasan Hassan', Akash Kumar?, Onur Mutlu
and Can Alkan®*

'Computer Science Department, ETH Ziirich, Ziirich 8092, Switzerland, *Chair for Processor Design, Center For
Advancing Electronics Dresden, Institute of Computer Engineering, Technische Universitdt Dresden, 01062
Dresden, Germany and *Computer Engineering Department, Bilkent University, 06800 Ankara, Turkey

1131*

*To whom correspondence should be addressed.
Associate Editor: Inanc Birol
Received on September 13, 2018; revised on February 27, 2019; editorial decision on March 7, 2019; accepted on March 27, 2019

Alser+, “Shouji: a fast and efficient pre-alignment filter for sequence alignment”,

Bioinformatics 2019,
https://doi.org/10.1093/bioinformatics/btz234
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Shouyt

Key observation:

o Correct alignment always includes long identical subsequences.

o Processing the entire mapping at once is ineffective for hardware
design.

Key idea:

o Use overlapping sliding window approach to quickly and accurately
find all long segments of consecutive zeros.

Key result:

o Shouji on FPGA is up to three orders of magnitude faster than its CPU
implementation.

o Shouji accelerates best-performing CPU read aligner Edlib
(Bioinformatics 2017) by up to 18.8x using 16 filtering units that work

in parallel.

o Shouji is 2.4x to 467x more accurate than GateKeeper (Bioinformatics
2017) and SHD (Bioinformatics 2015).

SAFARI 183



Building the
Neighborhood Map

Finding all common
subsequences
(diagonal segments of
consecutive zeros)
shared between two
given sequences.

© G N & 1 & W N R -

S XN N
N = O

Storing it @ Shouji Bit-vector

J 1 2 3 4 5 6 7 8 9 10 11 12
G| G | T|G|C|A|G | A|G Cc T C

G| O oM QY

o[> 0 md

TIM N 0 LR

6| o [0y ¥y 0

A N 1] 0

G A 0,10

A 1101/ 1

G 0|10 1|1

T 110110/ 1

T 10101101

G 1ol 1] 1]1

T 11101

0

0

0

1

0

0

0

0

1

0

1

ACCEPT iff number of ‘1’ < Threshold

Shouji: a fast and efficient pre-alignment filter for sequence alignment, Bioinformatics 2019,

https://doi.org/10.1093/bioinformatics/btz234
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Shouji Walkthrough

J 1 2 3 4 6 7 8 9 10 11 12
Building the i G|G|T |6 AlG A|G|Cc |T|cC
Nl 1 /6loffo|1]o0
g 26 |ofjo|1 |0
i -
B 1 3T 1101 1
el 4 {6 lofo|1]0 110
5 (A 1011 0|10
6 |6 110 11010
7 | A 1 o/ 1[0|1]1
8|6 110/1]0/)1]1
9 |1 111 1]1]0]1
0T 1111, 1f0]1
1|6 1o 1] 1] 1
2|7 111] 0] 1
Storing it @SSR tor olofo|ofar]|ofo|ofO|2]|oO]|1

ACCEPT iff number of ‘1’ < Threshold

Shouji: a fast and efficient pre-alignment filter for sequence alignment, Bioinformatics 2019,
https://doi.org/10.1093/bioinformatics/btz234
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Sliding Window Size

The reason behind the selection of the window size is due
to the minimal possible length of the identical subsequence
that is a single match (e.g., such as 101").

0.6
52.86%

0.45
i)
&
a
g 03
<
3 17.30%
L

0.15

3.680/0 1100/0
0 O
1 2 3 4

Window Size (bits)
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Hardware Implementation

-®
.
.
.
-
-
_e

[~ SLIDER loaic slices | | |

« Counting is performed concurrently for a// bit-vectors and all
sliding windows in a single clock cycle using multiple 4-input

Uuu 1l
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0011
0100
0101
0110
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Mote on Shouyjt

Download and test for yourself
https://qgithub.com/CMU-SAFARI/ShOUJI ,uimeies 16

doi: 10.1093/bioinformatics/btz234
Advance Access Publication Date: 28 March 2019
Original Paper

Sequence alignment

Shouji: a fast and efficient pre-alignment filter
for sequence alignment

Mohammed Alser'?>*, Hasan Hassan', Akash Kumar?, Onur Mutlu
and Can Alkan®*

'Computer Science Department, ETH Ziirich, Ziirich 8092, Switzerland, *Chair for Processor Design, Center For
Advancing Electronics Dresden, Institute of Computer Engineering, Technische Universitdt Dresden, 01062
Dresden, Germany and 2Computer Engineering Department, Bilkent University, 06800 Ankara, Turkey

1,3,

*To whom correspondence should be addressed.
Associate Editor: Inanc Birol
Received on September 13, 2018; revised on February 27, 2019; editorial decision on March 7, 2019; accepted on March 27, 2019

Alser+, "Shouji: a fast and efficient pre-alignment filter for sequence alignment”,

Bioinformatics 2019,
https://doi.org/10.1093/bioinformatics/btz234

SAFARI 188


https://doi.org/10.1093/bioinformatics/btz234
https://doi.org/10.1093/bioinformatics/btz234
https://github.com/CMU-SAFARI/Shouji

Specialized Hardware for Pre-alignment Filtering

Mohammed Alser, Taha Shahroodi, Juan-Gomez Luna, Can Alkan, and Onur Mutlu,
"SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment
Filter for CPUs, GPUs, and FPGAs"

Bioinformatics, 2020.

[Source Code]

[Online link at Bioinformatics Journal]

Bioinformatics ISCB?

INTERNATIONAL SOCIETY FOR
COMPUTATIONAL BIOLOGY

SneakySnake: a fast and accurate universal genome pre-
alignment filter for CPUs, GPUs and FPGAs

Mohammed Alser &, Taha Shahroodi, Juan Gomez-Luna, Can Alkan ™, Onur Mutlu =

Bioinformatics, btaal015, https://doi.org/10.1093/bioinformatics/btaal015
Published: 26 December2020 Article history v
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http://bioinformatics.oxfordjournals.org/
https://github.com/CMU-SAFARI/SneakySnake
https://doi.org/10.1093/bioinformatics/btaa1015

SneakySnake

= Key observation:

o Correct allgnment is a sequence of non overlapping long matches.
: i< J‘J-r'\ .‘:

'SQM *% '

/s.

ioglossoides scaffolds
1NN
Oﬁ i -

s o + - Dot plot, dot matrix
A T B T 1T B !ﬁi (Lipman and Pearson, 1985)

i : t ( l l l:‘% {{iiiiiia
! EERRRLH

T mflatum scaffolds
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SneakySnake

= Key observation:

o Correct alignment is a sequence of non-overlapping long matches
= Key idea:

o Approximate edit distance calculation is similar to Single Net
Routing problem in VLSI chip

VLSI ch|p Iayout

~ a : e
o8
sttt

- |
=2
c
o
S
[
v

OMpressor
(JU« '

nauctive coup e' '
Transceiver (IITG)
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SneakySnake Walkthrough

Building Neighborhood Map Finding the Optimal Routing Path Examining the Snake Survival

Given two genomic sequences, a
reference sequence R[1...m] and a query sequence Q[1...m], and an E
edit distance threshold E, we calculate the entry Z[i, j| of the chip maze,
where 1 <4 < (2E+ 1) and 1 < j < m, as follows:

3

, if 1<i<E, Qlj—1 = RIj,
, if i>E+1,Q[j +i— E—1]=R[j,
,  otherwise

cohomn. 4 2 3 4 95 €& F & © 0 II P2

Z[i, j] = ey

= O O O

3" Upper Diagonal

i Upper Diagonal

I*" Upper Diagonal

Main Diagonal

I’ Lower Diagonal

2" Lower Diagonal

el B el Bl B Nl B
— NGO = I O | = | -
et | e = S| = =
— O = = | O | O
—_ = =] =] ===

1
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0
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0
|
1

— I S = O =] ©
— = — i O | = | O
— EH] - N O =] O
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SneakySnake Walkthrough

Building Neighborhood Map Finding the Optimal Routing Path
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SneakySnake Walkthrough

Building Neighborhood Map

Finding the Optimal Routing Path
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SneakySnake Walkthrough

Building Neighborhood Map Finding the Routing Travel Path Examining the Snake Survival
This is what you actually need to build - 3
and it can be done on-the-fly!

checkpoint 1 checkpoint 2 checkpoint 3

Ll
O
=
=
—
=
L
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FPGA Resource Analysis

FPGA resource usage for a single filtering unit of GateKeeper,

Shouji, and Snake-on-Chip for a sequence length of 100 and
under different edit distance thresholds (E).

E (bp) Slice LUT Slice Register | No. of Filtering Units

A 2 0.39% 0.01% 16
P 5 0.71% 0.01% 16

I 2 0.69% 0.08% 16
’ 5 1.72% 0.16% 16

. 2 0.68% 0.16% 16
Snake-on-Chip 5 1.42% 0.34% 16
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Key Results of SneakySnake

a SneakySnake is up to four orders of magnitude more accurate
than Shouji (Bioinformatics’'19) and GateKeeper (Bioinformatics'17)

o Using short reads, SneakySnake accelerates Edlib
(Bioinformatics'17) and Parasail (BMC Bioinformatics’16) by

up to 37.7x and 43.9x (>12x on average), on CPUs

up to 413x and 689x (>400x on average) with FPGA/GPU
acceleration

o Using long reads, SneakySnake accelerates Parasail and KSW2 by
140.1x and 17.1x on average, respectively, on CPUs
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Data Movement Dominates Performance

= Data movement dominates performance and is a major
system energy bottleneck (accounting for 40%-62%)

Data Movement

o
o\

Sequencing Storage (SSD/HDD) Main Memory Microprocessor
Machine

Single memory request consumes >160x-800x more
energy compared to performing an addition operation

* Boroumand et al., “"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
* Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” IISWC 2013
* Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” IISWC 2014
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Read Mapping & Filtering in Memory

We need to design
mapping & filtering algorithms
that fit processing-in-memory
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Processing Using Memoty

Computer Architecture
Lecture 6a: RowHammer &

Secure and Reliable Memory 11

Prof. Onur Mutlu
ETH Zirich
Fall 2021
15 October 2021

© ETH ZURICH D-ITET
Computer Architecture - Lecture 6: Processing using Memory (Fall 2021)

721 views * Streamed live on Oct 15, 2021 526 CHo ~> SHARE =+ SAVE
@ Onur MutIu.Lectures SUBSCRIBED r‘\
&> 19.6K subscribers -

SAFARI https://www.youtube.com/watch?v=HNd4skQrt61 202
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Processing Using Memory 11

Computer Architecture
Lecture 7: Processing using Memory 11

Dr. Juan Gomez Luna
Prof. Onur Mutlu
ETH Zirich
Fall 2021
21 October 2021

Computer Architecture - Lecture 7: Processing using Memory Il (Fall 2021)

558 views ¢ Streamed live on Oct 21, 2021 [ﬁ 28 g] ; A) SHARE =+ SAVE
@ e SUBSCRIBED ‘X
P S 19.6K subscribers :

SAFARI https://www.youtube.com/watch?v=k56x2qcaXWY 203
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Processing Near Memory

Computer Architecture
Lecture 8: Processing near Memory

LY

Dr. Juan Gomez Luna
Prof. Onur Mutlu
ETH Zirich
Fall 2021
22 October 2021

Computer Architecture - Lecture 8: Processing near Memory (Fall 2021)

759 views * Streamed live on Oct 22, 2021 [ﬁ 33 g] . A} SHARE =+ SAVE
@ e SUBSCRIBED ‘X
P S 19.6K subscribers :

SAFARI https://www.youtube.com/watch?v=kpglLmX9sdcI 204
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Using Real PIM System
F\ .

Juan Gomez L.... g,

Computer Architecture
Lecture 9a: Real PIM Systems:
UPMEM Case Study

Dr. Juan Gomez Luna
Prof. Onur Mutlu
ETH Zirich
Fall 2021
28 October 2021

Computer Architecture - Lecture 9: Real PIM Systems: UPMEM Case Study (Fall 2021)

137 views * Streamed live 5 hours ago 5 11 G0 > SHARE =+ SAVE
@ Onur Mutlu'Lectures SUBSCRIBED r‘.\
&> 19.6K subscribers =

SAFARI https://www.youtube.com/watch?v=TuVw_SKaTCo 205
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Near-memory Pre-alignment Filtering

Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos,
Juan Gomez-Luna, Henk Corporaal, Onur Mutlu,
“FPGA-Based Near-Memory Acceleration of Modern Data-Intensive

Applications"
IEEE Micro, 2021.

[Source Code]

-m—n -

llI!L

FPGA Computmg

9IEEE

y/ -
o

4 »
Previous Next

i= Table of Contents

Past Issues

Home / Magazines / IEEE Micro / 2021.04

IEEE Micro

FPGA-Based Near-Memory Acceleration of
Modern Data-Intensive Applications

July-Aug. 2021, pp. 39-48, vol. 41
DOI Bookmark: 10.1109/MM.2021.3088396

Authors

Gagandeep Singh, ETH Zrich, Zirich, Switzerland

Mohammed Alser, ETH Zirich, Zirich, Switzerland

Damla Senol Cali, Carnegie Mellon University, Pittsburgh, PA, USA

Dionysios Diamantopoulos, Zirich Lab, IBM Research Europe, Riischlikon, Switzerland
Juan Gomez-Luna, ETH Zirich, Zirich, Switzerland

Henk Corporaal, Eindhoven University of Technology, Eindhoven, The Netherlands
Onur Mutlu, ETH Zirich, Zirich, Switzerland
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Near-memory SneakySnake

= Problem: Read Mapping is heavily bottlenecked by data
movement from main memory

= Solution: Perform read mapping near where data resides (i.e.,
near-memory)

= We carefully redesigned the accelerator logic of SneakySnake
to exploit near-memory computation capability on modern
FPGA boards with high-bandwidth memory
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Heterogeneous System: CPU+FPGA

We evaluate two POWER9+FPGA systems:
1. HBM-based AD9H7 board: Xilinx Virtex Ultrascale+™ XCVU37P-2
2. DDR4-based AD9V3 board: Xilinx Virtex Ultrascale+™ XCVU3P-2

HBM-based AD9H7 board
FPGA + HBM on the same package substrate s SEvEns it 50

M RS

= M

Source: IBM

POWERY9 AC922

IR &

Source: AlphaData

DDR4-based AD9V3 board
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Key Results of Near-memory SneakySnake
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More on SneakySnake [Bioinformatics 2020)]

Mohammed Alser, Taha Shahroodi, Juan-Gomez Luna, Can Alkan, and Onur Mutlu,
"SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment
Filter for CPUs, GPUs, and FPGAs"

Bioinformatics, 2020.

[Source Code]

[Online link at Bioinformatics Journal]

Bioinformatics ISCB?

INTERNATIONAL SOCIETY FOR
COMPUTATIONAL BIOLOGY

SneakySnake: a fast and accurate universal genome pre-
alignment filter for CPUs, GPUs and FPGAs

Mohammed Alser &, Taha Shahroodi, Juan Gomez-Luna, Can Alkan ™, Onur Mutlu =

Bioinformatics, btaal015, https://doi.org/10.1093/bioinformatics/btaal015
Published: 26 December2020 Article history v

SAFARI 210


https://people.inf.ethz.ch/omutlu/pub/SneakySnake_UniversalGenomePrealignmentFilter_bioinformatics20.pdf
https://people.inf.ethz.ch/omutlu/pub/SneakySnake_UniversalGenomePrealignmentFilter_bioinformatics20.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/CMU-SAFARI/SneakySnake
https://doi.org/10.1093/bioinformatics/btaa1015

GRIM-Filter

Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies"

to appear in BMC Genomics, 2018.

Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC),
Yokohama, Japan, January 2018.

arxiv.org Version (pdf)

BMC Genomics

Research | Open Access | Published: 09 May 2018

GRIM-Filter: Fast seed location filtering in DNA read
mapping using processing-in-memory technologies

Jeremie S. Kim &, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed Alser,
Hasan Hassan, Oguz Ergin, Can Alkan &4 & Onur Mutlu

BMC Genomics 19, Article number: 89 (2018) | Cite this article
4340 Accesses \ 39 Citations | 9 Altmetric | Metrics
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https://arxiv.org/pdf/1711.01177.pdf

GRIM-Filter

Key observation: FPGA and GPU accelerators are Heavily
bottlenecked by Data Movement.

Key idea: exploiting the high memory bandwidth and the logic layer of
3D-stacked memory to perform highly-parallel filtering in the DRAM
chip itself.

Key results:
o We propose an algorithm called GRIM-Filter

o GRIM-Filter with processing-in-memory is 1.8x-3.7x (2.1x on
average) faster than FastHASH filter (BMC Genomics’13) across real
data sets.

o GRIM-Filter has 5.6x-6.4x (6.0x on average) lower falsely accepted
pairs than FastHASH filter (BMC Genomics'13) across real data sets.
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GRIM-Filter in 3D-Stacked DRAM

Row 0: AAAAA
Row 1: AAAAC
Row 2: AAAAG

Row R—1: TTTTT

o)
Q
>
~

Bitvector for bin 2
Bitvector for bin t—1

Bitvector for bin 0
Bitvector for bin 1

-] —

s Vault
) i
Logic Layer N

= Each DRAM layer is organized as an array of banks
o A bank is an array of cells with a row buffer to transfer data

= The layout of bitvectors in a bank enables filtering many

bins in parallel
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GRIM-Filter: Bitvectors

Reference
Genome

C AAAAA
AAAAC
AAAAG
AAAAT

CCCCT
tokens < '

GCATG

TTGCA

TTTTT

bin1
AAAAACCCCTGCCTTGCATGTAGAAAACTTGACAGGAACTTTTTATCGCA eee

by

OO -

— AAAAC
exists in
bin 1

bin3

o Represent each bin with a bitvector
that holds the occurrence of all
permutations of a small string (token)
in the bin

a To account for matches that straddle
bins, we employ overlapping bins

= A read will now always completely fall
within a single bin
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GRIM-Filter: Bitvectors

bin bin
Reference : 3
Genome "AAAACCCCTGCCTTGCATGTAGAAAACTTGACAGGAACTTTTTATCGCA -
bin,
bl b2
CAAAAA | 1 AAAAA | O
AAAAC 1 AAAAC 1
AAAAG 0 AAAAG 0
AAAAT 0 ) .
. . AGAAA 1
CCCCT | 1 ) .
. . GAAAA 1
tokens < _ _ _ _ e o o
GACAG 1
GCATG | 1 GCATG 1
TTGCA 1
WTTTTT 0 TTTTT 0

Storing all bitvectors
requires 4™ x t bits
in memory,

where

t = number of bins
&

n = token length.

For bin size ~200,
and n =5,
memory footprint
~3.8 GB
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GRIM-Filter: Checking a Bin

How GRIM-Filter determines whether to discard potential
match locations in a given bin prior to alignment

INPUT: Read Sequence r
GAACTTGGAGTCTA ... CGAG g Read bitvector forbin_num(x)

o Get tokens ¢

- : s s.\_:\_\ _______________ > 1
-————=== "C:\ __________ '> O
e ‘~\\ 1 e$um e Compare
N + = Threshold?
| S ~ < = \‘ 1
tokens \ " 1 Nf/ NES
i 1 Discard Send to
0 Read Mapper
o Match tokens to bitvector for sequence
0 Alignment
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More on GRIM-Filter

E=
Background: Read Mappers B,

and want a full genome

VVVVV XV

We can use a hash table to help quickly map the reads!

P Pl ¢ 335/1976 B &« (= O 3

Livestream - P&S Accelerating Genome Analysis with FPGAs, GPUs, and New Execution Paradigms (Fall 2021)

GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping w/ Processing-in-Memory
- Jeremie Kim

SAFAR] https://www.youtube.com/watch?v=j5-184iNVd8


https://www.youtube.com/watch?v=j5-I84iNVd8

More on GRIM-Filter

Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies"

to appear in BMC Genomics, 2018.

Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC),
Yokohama, Japan, January 2018.

arxiv.org Version (pdf)

BMC Genomics

Research | Open Access | Published: 09 May 2018

GRIM-Filter: Fast seed location filtering in DNA read
mapping using processing-in-memory technologies

Jeremie S. Kim &, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed Alser,
Hasan Hassan, Oguz Ergin, Can Alkan &4 & Onur Mutlu

BMC Genomics 19, Article number: 89 (2018) | Cite this article
4340 Accesses \ 39 Citations | 9 Altmetric | Metrics
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https://arxiv.org/pdf/1711.01177.pdf

GenCache

GenCache: Leveraging In-Cache Operators for Efficient
Sequence Alignment

Anirban Nag C. N. Ramachandra Rajeev Balasubramonian
anirban@cs.utah.edu ramgowda@cs.utah.edu rajeev@cs.utah.edu
University of Utah University of Utah University of Utah
Salt Lake City, Utah Salt Lake City, Utah Salt Lake City, Utah
Ryan Stutsman Edouard Giacomin Hari Kambalasubramanyam
stutsman@cs.utah.edu edouard.giacomin@utah.edu hari.kambalasubramanyam@utah.edu
University of Utah University of Utah University of Utah
Salt Lake City, Utah Salt Lake City, Utah Salt Lake City, Utah

Pierre-Emmanuel Gaillardon
pierre-
emmanuel.gaillardon@utah.edu
University of Utah
Salt Lake City, Utah

Nag, Anirban, et al. "GenCache: Leveraging In-Cache Operators for Efficient
Sequence Alignment." Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 52) , ACM, 2019.
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GenCache

Key observation: State-of-the-art alignment accelerators are still
bottlenecked by memory.

Key ideas:

o Performing in-cache alignment + pre-alignment filtering by enabling
processing-in-cache using previous proposal, ComputeCache
(HPCA'17).

o Using different Pre-alignment filters depending on the selected edit
distance threshold.

Results:

o GenCache on CPU is 1.36x faster than GenAx (ISCA 2018).
GenCache in cache is 5.26x faster than GenAx.

o GenCache chip has 16.4% higher area, 34.7% higher peak power,
and 15% higher average power than GenAx.
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GenCache’s Four Phases

Phase 1 Phase 2 Phase 3 Phase 4
0 ERRORS 1 ERROR 2-5 ERRORS 6+ ERRORS
Seed Solver: Seed Solver: Seed Solver: Seed Solver:
MIN SEARCH MIN_SEARCH HOBBES SMEM
Operations: ’I Operations: _) Operations: | ) Operations:
HD SHD SHD C MYERS B
MYERS B SWA
48 MB REF 48 MB REF SWA
20 MB BLOOM 20 MB BLOOM 40 MB REF 24 MB REF
4 MB INDEX 8 MB INDEX 32 MB INDEX 48 MB INDEX

Figure 7: Four phases in the new alignment algorithm that
exploits in-cache operators.
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Throughput Results

Throughput (KReads/s)

5000
0000 I
5000

'"'m m B .

Genh* Lc M) _ 62 MB\ “,hasmg\ avhasg‘?é orm Filten)

Figure 9: Throughput improvement of GenCache (Hardware
& Software).
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Ongoing Directions

Seed Filtering Technique:

o Goal: Reducing the number of seed (k-mer) locations.
Heuristic (limits the number of mapping locations for each seed).
Supports exact matches only.

Pre-alignment Filtering Technique:

o Goal: Reducing the number of /nvalid mappings (>E).
Supports both exact and inexact matches.
Provides some falsely-accepted mappings.

Read Alignment Acceleration:
o Goal: Performing read alignment at scale.

Limits the numeric range of each cell in the DP table and hence
supports limited scoring function.

May not support backtracking step due to random memory accesses.
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GenASM Framework [MICRO 2020]

Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S.
Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand,
Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching
Acceleration Framework for Genome Sequence Analysis"

Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual,
October 2020.

[Lightning Talk Video (1.5 minutes)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (18 minutes)]

[Slides (pptx) (pdf)]

GenASM: A High-Performance, Low-Power
Approximate String Matching Acceleration Framework
for Genome Sequence Analysis

Damla Senol Cali ™ Gurpreet S. Kalsi®  Ziilal Bingol¥  Can Firtina® Lavanya Subramanian Jeremie S. Kim®?
Rachata Ausavarungnirun® Mohammed Alser® Juan Gomez-Luna® Amirali Boroumand' Anant Nori®
Allison Scibisz|  Sreenivas Subramoney™ Can AlkanV Saugata Ghose*T  Onur Mutlu®TV

TCarnegie Mellon University ™ Processor Architecture Research Lab, Intel Labs " Bilkent University =~ °ETH Ziirich
YFacebook  ©King Mongkut’s University of Technology North Bangkok — * University of lllinois at Urbana—Champaign
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Near-memory GenASM Framework

Our goal: Accelerate approximate string matching (ASM) by
designing a fast and flexible framework, which can accelerate
multiple steps of genome sequence analysis.

Key ideas: Exploit the high memory bandwidth and the logic layer of
3D-stacked memory to perform highly-parallel ASM in the DRAM chip
itself.

Modify and extend Bitapl2, ASM algorithm with fast and simple

bitwise operations, such that it now:

o Supports long reads

o Supports traceback

o Is highly parallelizable

Co-design of our modified scalable and memory-efficient algorithms
with low-power and area-efficient hardware accelerators

[1] R. A. Baeza-Yates and G. H. Gonnet. "A New Approach to Text Searching." CACM, 1992.
[2] S. Wu and U. Manber. "Fast Text Searching: Allowing Errors." CACM, 1992.
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Key Results of the GenASM Framework

(1) Read Alignment

= 116x speedup, 37x less power than Minimap2 (state-of-the-art SW)

= 111x speedup, 33x less power than BWA-MEM (state-of-the-art SW)

= 3.9x better throughput, 2.7x less power than Darwin (state-of-the-art HW)

= 1.9x better throughput, 82% less logic power than GenAX (state-of-the-art HW)

(2) Pre-Alignment Filtering
= 3.7x speedup, 1.7x less power than Shouji (state-of-the-art HW)

(3) Edit Distance Calculation
m 22-12501x speedup, 548-582x |less power than Edlib (state-of-the-art sw)

= 9.3-400x speedup, 67x less power than ASAP (state-of-the-art HW)
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More on GenASM

Read Mapping

Reference
genome

Hash-table
based index

Reads —p

Potential mapping
locations
Reference

segment

Pre-Alignment Filtering

Query read Remaining
potential mapping

locations
Read Alignment

Livestream - P&S Accelerating Genome Analysis with FPGAs, GPUs, and New Execution Paradigms (Fall 2021)
Comp. Architecture - Lecture 9a: GenASM: Approx. String Matching Accelerator (ETH
Ziirich, Fall 2020)

SAFARI| https://www.youtube.com/watch?v=XoLpzmN-Pas 232


https://www.youtube.com/watch?v=XoLpzmN-Pas

GenStore (ASPLOS 2022)

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid
Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Aimadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, Onur Mutlu
"GenStore: A High-Performance and Energy-Efficient In-Storage Computing System
for Genome Sequence Analysis",
ASPLOS 2022

GenStore: A High-Performance In-Storage Processing System

for Genome Sequence Analysis

Nika Mansouri Ghiasi Jisung Park Harun Mustafa Jeremie Kim
ETH Ziirich ETH Ziirich ETH Ziirich ETH Ziirich
Switzerland Switzerland Switzerland Switzerland

Ataberk Olgun Arvid Gollwitzer Damla Senol Cali Can Firtina
ETH Zirich ETH Ziirich Bionano Genomics ETH Ziirich
Switzerland Switzerland USA Switzerland
Haiyu Mao Nour Almadhoun Rachata Nandita Vijaykumar
ETH Zurlch Alserr Ausavarungnirun Univer Slty Of TOI‘OHtO
Switzerland ETH Ziirich KMUTNB Canada
Switzerland Thailand
Mohammed Alser Onur Mutlu
ETH Ziirich ETH Zirich
Switzerland Switzerland
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https://arxiv.org/abs/2202.10400
https://arxiv.org/abs/2202.10400

Key Ideas ot GenStore (ASPLOS 2022)

GenStore-EM (exactly-matching reads filter): In some cases, a large fraction of reads
exactly match to subsequences of the reference genome.

GenStore-NM (non-matching reads filter): In some cases, a large fraction of reads do
not match to subsequences of the reference genome.

Sequencing Machine | Storage (SSD/HDD)

Main Memory Microprocessor

GenStore-EM: 2.1-6.1x speedup & 3.92x energy saving compared to minimap2.
GenStore-NM: 1.4-33.6x speedup & 27.17x energy saving compared to minimap2.
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GenPIP (MICRO 2022)

Haiyu Mao, Mohammed Alser, Mohammad Sadrosadati, Can Firtina, Akanksha
Baranwal, Damla Senol Cali, Aditya Manglik, Nour Almadhoun Alserr, Onur Mutlu
“GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration of
Basecalling and Read Mapping”

Proceedings of the 55rd International Symposium on Microarchitecture (MICRO),
2022.

GenPIP: In-Memory Acceleration of Genome Analysis
via Tight Integration of Basecalling and Read Mapping

Haiyu Mao! Mohammed Alser! Mohammad Sadrosadati'! Can Firtina! Akanksha Baranwal!
Damla Senol Cali? Aditya Manglik! Nour Almadhoun Alserr! Onur Mutlu*

LETH Ziirich 2Bionano Genomics
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Innovations Require Change

= CP processes reads at the granularity of a chunk instead of the complete
read sequence, increasing parallelism and resource utilization by
overlapping the execution of different steps.

Chunk1 Chunk2 Chunk3 Chunk4 Read Riad

A 1 A 1 I A
= [ \

\ { Y
Basecalling i QC Read Mapping

)
Basecalling Basecalling I Basecalling

Conventional
Pipeline

r-

. | : .
I[ Basecalling I Basecalling I Basecalling I Basecalling Igc S'Ql:ﬁ"ty control :

] j S: Seeding I

? o , ‘ [ | 1 C: Chaining I

g2 ac | ac | ac | | A:Alignment |

=

c .2

Sa

N

o

EE (EE iEE |EEH

GenPIP provides 41.6x and 8.4x speedup and 32.8x and 20.8x

energy reduction compared to CPU and GPU state-of-the-art
solutions.
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GateKeeper [Alser+, Bioinformatics 2017]

Mohammed Alser, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur Mutlu, and Can Alkan
"GateKeeper: A New Hardware Architecture for Accelerating Pre-Alignment in
DNA Short Read Mapping"

Bioinformatics, [published online, May 31], 2017.

[Source Code]

[Online link at Bioinformatics Journal]

Bioinformatics ISCB?

INTERNATIONAL SOCIETY FOR
COMPUTATIONAL BIOLOGY

Article Navigation

GateKeeper: a new hardware architecture for accelerating
pre-alignment in DNA short read mapping @

Mohammed Alser ¢, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur Mutlu = Can Alkan

Bioinformatics, Volume 33, Issue 21, 01 November 2017, Pages 3355-3363,
https://doi.org/10.1093/bioinformatics/btx342
Published: 31 May 2017 Article history v
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https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/BilkentCompGen/GateKeeper
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx342

MAGNET

Mohammed Alser, Onur Mutlu, and Can Alkan.

"MAGNET: understanding and improving the accuracy of genome pre-alignment
filtering"

IPSI Transaction (2017).

[Source code]

MAGNET: Understanding and Improving
the Accuracy of
Genome Pre-Alignment Filtering

Alser, Mohammed; Mutlu, Onur; and Alkan, Can
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Shouji (FFF-) [Alser+, Bioinformatics 2019]

Mohammed Alser, Hasan Hassan, Akash Kumar, Onur Mutlu, and Can Alkan,
"Shouji: A Fast and Efficient Pre-Alignment Filter for Sequence Alighment"
Bioinformatics, [published online, March 28], 2019.

[Source Code]

[Online link at Bioinformatics Journal]

Bioinformatics, 2019, 1-9

doi: 10.1093/bioinformatics/btz234

Advance Access Publication Date: 28 March 2019
Original Paper

Sequence alignment

Shouiji: a fast and efficient pre-alignment filter
for sequence alignment

Mohammed Alser'2>*, Hasan Hassan', Akash Kumar?, Onur Mutlu'>"*
and Can Alkan®*

1Computer Science Department, ETH Ziirich, Ziirich 8092, Switzerland, 2Chair for Processor Design, Center For
Advancing Electronics Dresden, Institute of Computer Engineering, Technische Universitdt Dresden, 01062
Dresden, Germany and 3Computer Engineering Department, Bilkent University, 06800 Ankara, Turkey
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https://github.com/CMU-SAFARI/Shouji
https://doi.org/10.1093/bioinformatics/btz234

In-Memory Sequence Analysis GRIM-Filter

Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies"

to appear in BMC Genomics, 2018.

Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC),
Yokohama, Japan, January 2018.

arxiv.org Version (pdf)

BMC Genomics

Research | Open Access | Published: 09 May 2018

GRIM-Filter: Fast seed location filtering in DNA read
mapping using processing-in-memory technologies

Jeremie S. Kim &, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed Alser,
Hasan Hassan, Oguz Ergin, Can Alkan &4 & Onur Mutlu

BMC Genomics 19, Article number: 89 (2018) | Cite this article
4340 Accesses \ 39 Citations | 9 Altmetric | Metrics
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https://arxiv.org/pdf/1711.01177.pdf

Near-memory Pre-alignment Filtering

Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos,
Juan Gomez-Luna, Henk Corporaal, Onur Mutlu,
“FPGA-Based Near-Memory Acceleration of Modern Data-Intensive

Applications"
IEEE Micro, 2021.

[Source Code]

..m—n -

ulILLL

FPGA Computmg

Previous Next
i= Table of Contents

Past Issues

Home / Magazines / IEEE Micro / 2021.04

IEEE Micro

FPGA-Based Near-Memory Acceleration of
Modern Data-Intensive Applications

July-Aug. 2021, pp. 39-48, vol. 41
DOI Bookmark: 10.1109/MM.2021.3088396

Authors

Gagandeep Singh, ETH Zrich, Zirich, Switzerland

Mohammed Alser, ETH Zirich, Zirich, Switzerland

Damla Senol Cali, Carnegie Mellon University, Pittsburgh, PA, USA

Dionysios Diamantopoulos, Zirich Lab, IBM Research Europe, Riischlikon, Switzerland
Juan Gomez-Luna, ETH Zirich, Zirich, Switzerland

Henk Corporaal, Eindhoven University of Technology, Eindhoven, The Netherlands
Onur Mutlu, ETH Zirich, Zirich, Switzerland
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GenASM Framework [MICRO 2020]

Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S.
Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand,
Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching
Acceleration Framework for Genome Sequence Analysis"

Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual,
October 2020.

[Lightning Talk Video (1.5 minutes)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (18 minutes)]

[Slides (pptx) (pdf)]

GenASM: A High-Performance, Low-Power
Approximate String Matching Acceleration Framework
for Genome Sequence Analysis

Damla Senol Cali ™ Gurpreet S. Kalsi®  Ziilal Bingol¥  Can Firtina® Lavanya Subramanian Jeremie S. Kim®?
Rachata Ausavarungnirun® Mohammed Alser® Juan Gomez-Luna® Amirali Boroumand' Anant Nori®
Allison Scibisz|  Sreenivas Subramoney™ Can AlkanV Saugata Ghose*T  Onur Mutlu®TV

TCarnegie Mellon University ™ Processor Architecture Research Lab, Intel Labs " Bilkent University =~ °ETH Ziirich
YFacebook  ©King Mongkut’s University of Technology North Bangkok — * University of lllinois at Urbana—Champaign
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SeGraM (ISCA 2022)

Damla Senol Cali, Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet
S. Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie Kim, Nika Mansouri
Ghiasi, Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr,

Mohammed Alser, Sreenivas Subramoney, Can Alkan, Saugata Ghose, Onur Mutlu
“SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and
Sequence-to-Sequence Mapping”

ISCA 2022

SeGraM: A Universal Hardware Accelerator for
Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping

Damla Senol Cali! Konstantinos Kanellopoulos? Joél Lindegger? Ziilal Bingol®
Gurpreet S. Kalsi* Ziyi Zuo® Can Firtina? Meryem Banu Cavlak? Jeremie Kim?
Nika Mansouri Ghiasi® Gagandeep Singh? Juan Gémez-Luna? Nour Almadhoun Alserr?
Mohammed Alser? Sreenivas Subramoney® Can Alkan® Saugata Ghose® Onur Mutlu?

IBionano Genomics 2ETH Ziirich >Bilkent University  *Intel Labs
SCarnegie Mellon University ~ ®University of Illinois Urbana-Champaign
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Demeter (HD Food Microbiome Profiling)

Taha Shahroodi, Mahdi Zahedi, Can Firtina, Mohammed Alser, Stephan Wong,
Onur Mutlu, Said Hamdioui

“Demeter: A Fast and Energy-Efficient Food Profiler using Hyperdimensional
Computing in Memory”

IEEE Access, 2022

IEEE Access
=M RESEARCH ARTICLE e o S

Demeter: A Fast and Energy-Efficient Food
Profiler Using Hyperdimensional
Computing in Memory

TAHA SHAHROODI !, MAHDI ZAHEDI !, CAN FIRTINA2, MOHAMMED ALSER 2,
STEPHAN WONG!, (Senior Member, IEEE), ONUR MUTLU -2, (Fellow, IEEE),
AND SAID HAMDIOUI'!, (Senior Member, IEEE)

!Q&CE Department, EEMCS Faculty, Delft University of Technology (TU Delft), 2628 CD Delft, The Netherlands
2S AFARI Research Group, D-ITET, ETH Ziirich, 8092 Ziirich, Switzerland
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AIM (PIM Sequence Alignment Framework)

Safaa Diab, Amir Nassereldine, Mohammed Alser, Juan Gomez-Luna,

Onur Mutlu, Izzat El Hajj

“A Framework for High-throughput Sequence Alignment using Real Processing-in-
Memory Systems”

arXiv, 2022

[Source code]

A Framework for High-throughput Sequence
Alignment using Real Processing-in-Memory
Systems

Safaa Diab!, Amir Nassereldine!, Mohammed Alser?, Juan Gémez Luna?, Onur Mutlu?, Izzat El Hajj'

I American University of Beirut, Lebanon 2ETH Ziirich, Switzerland

SAFARI 245


https://arxiv.org/abs/2208.01243
https://arxiv.org/abs/2208.01243
https://github.com/safaad/aim

Near-memory Sequence Alignment

Our Contributions GenASM [MICRO 2020]

SeGraM [ISCA 2022]

Specialized Pre-alignment Filtering
Accelerators (GPU, FPGA)

GateKeeper [Bioinformatics'17]

Near-memory/In-memory

Pre-alignment Filtering

GRIM-Filter [BMC Genomics'18]

SneakySnake [IEEE Micro'21]
MAGNET [AACBB'18]

GenASM [MICRO 2020] | \
\ Shouji [Bioinformatics'19]
\
‘. GateKeeper-GPU [arXiv'21]
[
Il' SneakySnake [Bioinformatics'20]

Sequencing Machine Storage (SSD/HDD) Main Memory Microprocessor



Conclusion on Ongoing Directions

Read alignment can be substantially accelerated using
computationally inexpensive and accurate pre-alignment
filtering algorithms designed for specialized hardware.

All the three directions are used by mappers today, but
filtering has replaced alignment as the bottleneck.

Pre-alignment filtering does not sacrifice any of the aligner
capabilities, as it does not modify or replace the alignment

step.
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What else can be done?
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What if we got a new version of
the reference genome?

.FASTA file .FASTQ file
‘
S\ ‘l
..r
‘.r
Reference / * ol

genome

‘-"

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/
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Revisiting the Puzzle

ww.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-seqguencing/
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Reterence Genome Bias

nature genetics

Letter \ Open Access | Published: 19 November 2018

Assembly of a pan-genome from deep
sequencing of 910 humans of African
descent

Rachel M. Sherman &, Juliet Forman, [...] Steven L. Salzberg

Nature Genetics 51, 30-35(2019) | Cite this article

“African pan-genome contains ~10% more DNA
bases than the current human reference genome”

SAFARI Sherman+, “Assembly of a pan-genome from deep sequencing of 910 humansgpf
African descent” Nature genetics, 2019.



https://www.nature.com/articles/s41588-018-0273-y
https://www.nature.com/articles/s41588-018-0273-y

Time to Change the Reference Genome

Genome Biology '

Home About Articles Submission Guidelines

Opinion | Open Access ] Published: 09 August 2019
Is it time to change the reference genome?

Sara Ballouz, Alexander Dobin & Jesse A. Gillis

Genome Biology 20, Article number: 159 (2019) | Cite this article

12k Accesses | 11 Citations | 45 Altmetric | Metrics

“Switching to a consensus reference would offer important
advantages over the continued use of the current reference with

few disadvantages”
SAFAR| Ballouz+, "Is it time to change the reference genome?", Genome Biology, 201961



https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1774-4

Airlift

Jeremie S. Kim, Can Firtina, Meryem Banu Cavlak, Damla Senol Cali,
Mohammed Alser, Nastaran Hajinazar, Can Alkan, Onur Mutlu
“AirLift: A Fast and Comprehensive Technique for Remapping Alignments between

Reference Genomes”
arXiv 2022
GitHub: https://github.com/CMU-SAFARI/AirLift

= I‘le > g-bio > arXiv:1912.08735

Quantitative Biology > Genomics

[Submitted on 18 Dec 2019 (v1), last revised 12 Aug 2022 (this version, v3)]

AirLift: A Fast and Comprehensive Technique for
Remapping Alignments between Reference Genomes

Jeremie S. Kim, Can Firtina, Meryem Banu Cavlak, Damla Senol Cali, Mohammed Alser,
Nastaran Hajinazar, Can Alkan, Onur Mutlu

SAFARI 262


https://arxiv.org/abs/1912.08735
https://arxiv.org/abs/1912.08735
https://github.com/CMU-SAFARI/AirLift

Airlift

Key observation: Reference genomes are updated frequently.
Repeating read mapping is a computationally expensive workload.

Key idea: Update the mapping results of only affected reads
depending on how a region in the old reference relates to another
region in the new reference.

Key results:

a reduces number of reads that needs to be re-mapped to new
reference by up to 99%

o reduces overall runtime to re-map reads by 6.94x, 208x, and
16.4x for large (human), medium (C. elegans), and small
(yeast) reference genomes
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Clustering the Reference Genome Regions

Constant Region Updated Region
Retired Region New Region

Old Reference I

[t e

New Reference ]

Fig. 2. Reference Genome Regions.
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More Details on AirLift

Jeremie S. Kim, Can Firtina, Meryem Banu Cavlak, Damla Senol Cali,
Mohammed Alser, Nastaran Hajinazar, Can Alkan, Onur Mutlu
“AirLift: A Fast and Comprehensive Technique for Remapping Alignments between

Reference Genomes”
arXiv 2022
GitHub: https://github.com/CMU-SAFARI/AirLift

= I‘le > g-bio > arXiv:1912.08735

Quantitative Biology > Genomics

[Submitted on 18 Dec 2019 (v1), last revised 12 Aug 2022 (this version, v3)]

AirLift: A Fast and Comprehensive Technique for
Remapping Alignments between Reference Genomes

Jeremie S. Kim, Can Firtina, Meryem Banu Cavlak, Damla Senol Cali, Mohammed Alser,
Nastaran Hajinazar, Can Alkan, Onur Mutlu
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Agenda for Today

s What is Genome Analysis?
s What is Intelligent Genome Analysis?

= How we Analyze Genome?
= What are the Barriers to Enabling Intelligent Analyses?

= Algorithmic & Hardware Acceleration
o Seed Filtering Technique
a Pre-alignment Filtering Technique
o Read Alignment Acceleration

= Where is Genomic Analyses Going Next?
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Adoption of
hardware accelerators
IN genome analysis

SAFARI



Bioinformatics: Reviewer #6 (Dec. 20106)

I have a major concern with the work that is actually
not a problem with the manuscript at all. Specifically, I
have the concern that there has been little to no adoption of
previous specialized hardware solutions related to improving
the speed of alignment. While there has been considerable
work in this area (which the authors do an admirable job of
citing), it does not seem that these hardware-based solutions
have gained any type of real traction in the community, as the
vast majority of alignment is still performed on “reqgular” CPUs,
where the extent of hardware acceleration is the adoption of
specific SIMD or vectorized instructions. While I don’t think
that this practical concern should preclude publication of the
current work, it is something worth considering (what, if any,
of the proposed improvements to the SHD filter could be
“back-ported” to a software-only solution).
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Our Response

We see the reviewer’s point, but we do not believe this should be held against the research in the area of FPGA-based
acceleration of read mapping in particular or genomics in general. It always takes time to adopt a “new” or “different”
hardware technology since it requires investment into the hardware infrastructure. The main challenges/barriers that
limit the popularity of FPGAs in the genomics field are the high cost, design effort, and development time. Due to the
fact that the deliverable of such projects is normally a hardware product, researchers tend to commercialize their
research with startup companies and engage themselves with industrial collaborators, as we describe below. Today,
the cost structure of FPGAs is changing because major cloud infrastructures (e.g., by Microsoft Azure and Amazon
AWS) offer FPGAs as core engines of the infrastructure. Therefore, we believe the benefits of FPGA-based
acceleration has become available to many more folks in the community, especially with the open-source release of
such FPGA-accelerated solutions. To increase adoption, we have decided to release our source code for GateKeeper.
It is available on https://github.com/BilkentCompGen/GateKeeper.

Some examples of the research groups that commercialize their research and promote FPGA-based or even cloud-
based products for genomics are as follows:

http://www.timelogic.com/catalog/775

http://www.gidel.com/HPC-RC/HPC-Applications.asp

http://www.edicogenome.com/dragen bioit platform/the-dragen-engine-2/
http://www.bcgsc.ca/platform/bioinfo/software/XpressAlign/releases/1.0
https://www.sevenbridges.com/amazon/
http://www.falcon-computing.com/index.php/solutions/falcon-genomics-solutions/
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Our Response (cont’d)

It is also important to emphasize that the necessity of designing a mapper on hardware is currently steering the field
towards more personalized medicine. Hardware-accelerated mappers (using various platforms such as SIMD, GPUs,
and FPGAs) are becoming increasingly popular as they can be potentially directly integrated into sequencing machines
(the lllumina sequencer, for example, includes an FPGA chip inside it
https://support.illumina.com/content/dam/illumina-support/documents/downloads/software/hiseq/hcs_2-0-
12/installnotes hcs2-0-12.pdf ), such that we have a single machine that can perform both sequencing and mapping
(Lindner, et al., Bioinformatics 2016). This approach has two benefits. First, it can hide the complexity and details of
the underlying hardware from users who are not necessarily aware about FPGAs (e.g., biologists and
mathematicians). Second, it allows a significant reduction in total genome analysis time by starting read mapping
while still sequencing. Hence, an end user or researcher in genomics might not directly deal with the “pre-alignment
on FPGA” or “mapper on FPGA”, but they might purchase a sequencer that performs pre-alignment and alignment
using FPGAs inside. As such, one potential target of our research is to influence the design of more intelligent
sequencing machines by integrating GateKeeper inside them.

In fact, we believe GateKeeper is very suitable to be used as part of a sequencer as it provides a complete pre-
alignment system that includes many processing cores, where all processing cores work in parallel to provide
extremely fast filtering. We believe such a fast approach can make sequencers more intelligent and attractive.
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Dream
and, they will come

Computing landscape is very different from 10-20 years ago
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[lumina DRAGEN Bio-IT Platform (2018)

= Processes whole genome at 30x coverage in ~25 minutes
with hardware support for data compression
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FPGA board(s)

emea.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html
emea.illumina.com/company/news-center/press-releases/2018/2349147.html
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NVIDIA Clara Parabricks (2020)

A University of Michigan’s startup in
2018 and joined NVIDIA in 2020

GPU board(s)

PERFORMANCE COMPARISON
ine End-to-FEnd Secondarv A aly:

1,200 minutes

' l 52 minutes 35 minutes 23 minutes

e
CPU/GATK 8X T4 8X V100 8X A100

SAFARI https://developer.nvidia.com/clara-parabricks 274
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Computing
is Still Bottlenecked by
Data Movement

SAFARI



Adoption Challenges of Hardware Accelerators

Accelerate the entire read mapping process rather than its
individual steps (Amdahl’s law)

Reduce the high amount of data movement
o Working directly on compressed data

o Filter out unlikely-reused data at the very first component of the
compute system

Develop flexible hardware architectures that do NOT
conservatively limit the range of supported parameter
values at design time

Adapt existing genomic data formats for hardware
accelerators or develop more efficient file formats
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Adoption Challenges of Hardware Accelerators

= Maintaining the same (or better) accuracy/sensitivity of the
output results of the software version

o Using heuristic algorithms to gain speedup!

= High hardware cost

= Long development life-cycle for FPGA platforms
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Did we Achieve Our Goal?

Fast genome analysis in mere seconds using limited
computational resources (i.e., personal computer or small
hardware).

TOMORROWLAND
Ny

)’
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Open Questions

How and where to enable
fast, accurate, cheap,

privacy-preserving, and exabyte scale

analysis of genomic data?
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Pushing Towards New Architectures

FPGAS

Modern systems

Sequencing
Machine

Heterogeneous
Processors and
Accelerators

Persistent Memory/Storage
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Cerebras’s Water Scale Engine (2019)

= The largest ML
accelerator chip

e = 400,000 cores

Peitfeitnng

2

NVIDIA TITAN V

PFBY62.M00" 80
6V100-8%5-A1

Cerebras WSE Largest GPU
1.2 Trillion transistors 21.1 Billion transistors
46,225 mm?2 815 mm?2

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

SAFARI onur Mutlu, Computer Architecture Lecture 2b, Fall 2019, ETH Zurich 281



https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture2b-courselogistics-afterlecture.pdf

TESLA Full Selt-Driving Computer (2019)

= ML accelerator: 260 mm?, 6 billion transistors,
600 GFLOPS GPU, 12 ARM 2.2 GHz CPUs.

= Two redundant chips for better safety.
htt s://youtu.be/Ucp0TTmvqOE?t=4236

SAFARI onur Mutlu, Computer Architecture Lecture 2b, Fall 2019, ETH Zurich
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NextSeq 2000 with Analysis Capability

NextSeq 1000/2000 Integrates DRAGEN Bio-IT Platform On-Board

DRAGEN Bio-IT platform:

* Fast

» Accurate

* Industry standard pipelines

« For both novice and expert users

Pipelines available on-board:

* DRAGEN Enrichment pipeline

* DRAGEN RNA pipeline

* DRAGEN Germline

* DRAGEN Single Cell RNA

» Generate FASTQ via BCL Convert

» Additional pipelines available in
BaseSpace Sequence Hub

For Research Use Only.

II Iumlna. Not for use in diagnostic procedures.

= i
DRAGEN

SAFARI
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NVIDIA H100 (2022)

i -

rory HIRIININIRISIEIY
el (R ML)

NVIDIA is claiming a 7x improvement in dynamic programming

algorithm (DPX instructions) performance on a single H100
versus naive execution on an A100.

SAFAR]/| https://www.nvidia.com/en-us/data-center/h100

Up to 7X Higher Performance for HPC
Applications

3D Fast Fourier Transform (FFT) Genome Sequencing

H100 to A100 Comparison - Relative Performance
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BioPIM (2022)

Alignment

and search

algorithms
(BU, IP)

Neuromorphic

computing
(IBM/ |
BioPIM[®'

Associative \
memory
processing
(TECHNION)

Bulk bitwise
operations
(ETH)

Data
structures
(BU, IP,
CNRS)

\J

TN Graph

theory
(IP, CNRS)

Genomics

(BU, IP,

CNRS)
3D Stacked

Memory
technologies

(ETH, UPMEM
CNRS)

The vision of BioPIM is the realization of cheap, ultra-fast and ultra-low energy mobile
genomics that eliminates the current dependence of sequence analysis on large and power-

hungry computing clusters/data-centers.

SAFARI
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UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules

8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandW|dth

% 8GB/128xDPU PIM R-DIMM Module

UPMEM UPMEM UPE M UPMER UPMEM LIPMEM UPMEM UPMEM
PIM PN PIM Pl P PIM PIN pIM
chip chip chip chip chip chip chip thip

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem

https: upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/ 286
K1 Onur Mutlu, Computer Architecture Lecture 2b, Fall 2019, ETH Zurich



https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture2b-courselogistics-afterlecture.pdf

Where is Read Mapping Going Next?

Will 100% accurate genome-long
reads alleviate/eliminate the need for
read mapping?

Think about metagenomics, pan-genomics, ...
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Lecture Conclusion

System design for bioinformatics is a critical problem
o It has large scientific, medical, societal, personal implications

This lecture is about accelerating a key step in bioinformatics:
genome sequence analysis

o In particular, read mapping

Many bottlenecks exist in accessing and manipulating huge
amounts of genomic data during analysis

We cover various recent ideas to accelerate read mapping
a A journey since September 2006
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Key Takeaways

Population-scale analyses are not an easy task

You need to consider many things in designing a new
system + have good intuition/insight into ideas/tradeoffs

But, it is fun and can be very rewarding/impactful

And, enables a great future
o It has large scientific, medical, societal, personal implications

Very hot topic for graduate studies and research!

SAFARI 289



Key Conclusion

Most speedup comes from
parallelism enabled by

novel architectures and algorithms
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Recommended Readings

= Jones, Neil C. and Pavel Pevzner. “An introduction to
bioinformatics algorithms,” MIT press, 2004.

= Makinen, Veli, Djamal Belazzougui, Fabio Cunial, and
Alexandru I. Tomescu. “Genome-scale algorithm design,”
Cambridge University Press, 2015.

Veli Makinen, Djamal Belazzougui,
Fabio Cunial and Alexandru |. Tomescu

GENOME-SCALE
ALGORITHM
DESIGN o

AN INTRODUCTION TO
BIOINFORMATICS ALGORITHMS

BIOLOGICAL SEQUENCE ANALYSIS IN THE
ERA OF HIGH-THROUGHPUT SEQUENCING
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Read Mapping in 111 pages!
In-depth analysis of 107 read mappers (1988-2020)

Mohammed Alser, Jeremy Rotman, Dhrithi Deshpande, Kodi Taraszka, Huwenbo
Shi, Pelin Icer Baykal, Harry Taegyun Yang, Victor Xue, Sergey Knyazev, Benjamin D.
Singer, Brunilda Balliu, David Koslicki, Pavel Skums, Alex Zelikovsky,

Can Alkan, Onur Mutlu, Serghei Mangul

"Technology dictates algorithms: Recent developments in read alignment”

Genome Biology, 2021

[Source code]

Alser et al. Genome Biology (2021) 22:249

https://doi.org/10.1186/513059-021-02443-7 Geno me B|O | Ogy

Technology dictates algorithms: recent ")
developments in read alignment

updates
Mohammed Alser'*", Jeremy Rotman®", Dhrithi Deshpande®, Kodi Taraszka®, Huwenbo Shi®’, Pelin Icer Baykal®,
Harry Taegyun Yang*®, Victor Xue”, Sergey Knyazev®, Benjamin D. Singer'®'"'? Brunilda Balliu™,
David Koslicki"*'>'®, Pavel Skums® Alex Zelikovsky®'’, Can Alkan®'®, Onur Mutlu'**" and Serghei Mangul®™!
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Detailed Analysis of Tackling the Bottleneck

Mohammed Alser, Ziilal Bingdl, Damla Senol Cali, Jeremie Kim, Saugata Ghose,

Can Alkan, Onur Mutlu
“Accelerating Genome Analysis: A Primer on an Ongoing Journey”

IEEE Micro, August 2020.

o @, W s

IEEE Micro

@
ltm Home / Magazines / |IEEE Micro / 2020.05

Accelerating Genome Analysis: A Primer on
an Ongoing Journey

Sept.-Oct. 2020, pp. 65-75, vol. 40
DOI Bookmark: 10.1109/MM.2020.3013728

Machine Learning for Systems
Mini-Theme: Biology and Systems Interactions.

;‘;:_ Authors
- Mohammed Alser, ETH Zilrich
4 > Zulal Bingol, Bilkent University
Previous Next Damla Senol Cali, Carnegie Mellon University
Jeremie Kim, ETH Zurich and Carnegie Mellon University
i=  Table of Contents Saugata Ghose, University of lllinois at Urbana-Champaign and Carnegie Mellon University

Can Alkan, Bilkent University
Onur Mutlu, ETH Zurich, Carnegie Mellon University, and Bilkent University

Past Issues
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Near-memory Pre-alignment Filtering

Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos,
Juan Gomez-Luna, Henk Corporaal, Onur Mutlu,
“FPGA-Based Near-Memory Acceleration of Modern Data-Intensive

Applications"
IEEE Micro, 2021.

[Source Code]

-m—n -

llI!L

FPGA Computmg

9IEEE

y/ -
o

4 »
Previous Next

i= Table of Contents

Past Issues

Home / Magazines / IEEE Micro / 2021.04

IEEE Micro

FPGA-Based Near-Memory Acceleration of
Modern Data-Intensive Applications

July-Aug. 2021, pp. 39-48, vol. 41
DOI Bookmark: 10.1109/MM.2021.3088396

Authors

Gagandeep Singh, ETH Zrich, Zirich, Switzerland

Mohammed Alser, ETH Zirich, Zirich, Switzerland

Damla Senol Cali, Carnegie Mellon University, Pittsburgh, PA, USA

Dionysios Diamantopoulos, Zirich Lab, IBM Research Europe, Riischlikon, Switzerland
Juan Gomez-Luna, ETH Zirich, Zirich, Switzerland

Henk Corporaal, Eindhoven University of Technology, Eindhoven, The Netherlands
Onur Mutlu, ETH Zirich, Zirich, Switzerland
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https://arxiv.org/pdf/2106.06433.pdf
https://arxiv.org/pdf/2106.06433.pdf
https://github.com/CMU-SAFARI/SneakySnake/tree/master/SneakySnake-HLS-HBM

Accelerating Genome Analysis

How Large 1s a Genome?

Livestream - Seminar in Computer Architecture - ETH Ziirich (Spring 2022)

Seminar in Computer Arch. - Lecture 5: Accelerating Genome Analysis (Spring 2022)

SAFARI https://www.youtube.com/watch?v=gPIiiwUVFug 20



https://www.youtube.com/watch?v=qPIiiwUVFug

More on Accelerating Genome Analysis ...

Mohammed Alser,
"Accelerating Genome Analysis: A Primer on an Ongoing Journey"
Talk at RECOMB 2021, Virtual, August 30, 2021.
[Slides (pptx) (pdf)]

[Talk Video (27 minutes)]

[Related Invited Paper (at IEEE Micro, 2020)]

Our Contributions

Near-memory/In-memory Specialized Pre-alignment Filtering
Pre-alignment Filtering Accelerators (GPU, FPGA)

GRIM-Filter [BMC Genomics'18] | GateKeeper [Bioinformatics'17]

SneakySnake [IEEE Micro'21] | MAGNET [AACBB’18]

GenASM [MICRO 2020] ~~‘*\ Shouji [Bioinformatics'19]
L o ol .
\ +H '
Near-memory Sequence Alignment % | GateKeeper-GPL Furivii)
i \ e =
GenASM [MICRO 2020] | \\ \ SneakySnake [Bioinformatics’20] |
i
i
\4

(t#) Premieres in 23 hours
October 5, 4:30 PM

Q Set reminder Main Memory Microprocessor
20

Accelerating Genome Analysis: A Primer on an Ongoing Journey - RECOMB 2021 talk by
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https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqa0NLMXdWZWRKaUlhV3JEZlNaTHN0Ukp0WUctd3xBQ3Jtc0ttWGlJUEhQcDFIQ0VubjdwOGlrZnZSN1R3MGlHOUY5OTlCRmUtbFpLMkpaTXFlRFhCaENrdDRQd2E3LUJ2NTg1ekFrS01WRjlvYkxNU3VNUDV6TmhUdWliUTJpaHRjVkRmZWNzQjhjNVdjcE04a1RuWQ&q=https%3A%2F%2Fsafari.ethz.ch%2Fsafari_public_wp%2Fwp-content%2Fuploads%2FMohammedAlser-RECOMB2021-Highlights.pdf
https://www.youtube.com/watch?v=RzurItt3nNA
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf

More on Intelligent Genome Analysis ...

Mohammed Alser,

"Computer Architecture - Lecture 10: Intelligent Genome Analysis"

ETH Zurich, Computer Architecture Course, Fall2021, Lecture 10, Virtual, 29 October 2021.
[Slides (pptx) (pdf)]

[Talk Video (3 hour 2 minutes, including Q&A)]

[Related Invited Paper (at IEEE Micro, 2020)]

Untangling Yarn Balls & DNA Sequencinlg_~

Computer Architecture - Lecture 10: Intelligent Genome Analysis (Fall 2021)

412 views * Streamed live on Oct 29, 2021 19 0 A) SHARE =+ SAVE
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https://www.youtube.com/watch?v=tm-IRYa14qs
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=alser-comparch-fall2021-lecture10-intelligent-genome-analysis-afterlecture.pptx
https://safari.ethz.ch/architecture/fall2021/lib/exe/fetch.php?media=alser-comparch-fall2021-lecture10-intelligent-genome-analysis-afterlecture.pdf
https://www.youtube.com/watch?v=tm-IRYa14qs
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf

More on Intelligent Genome Analysis .

Mohammed Alser,
"Computer Architecture - Lecture 8: Intelligent Genome Analysis"

ETH Zurich, Computer Architecture Course, Lecture 8, Virtual, 15 October 2021.

[Slides (pptx) (pdf)]
[Talk Video (2 hour 54 minutes, including Q&A)]
[Related Invited Paper (at IEEE Micro, 2020)]

Our Solution: GateKeeper

FPGA-based
Alignment Filter.

x1012 N g x103
mappings 4 mappings
=

3: | =

0 High throughput DNA Read Pre-Alignment Filtering
quencing (HTS) technologk [2] Fast & Low False Positive Rate

wrEw
} | ‘D 2:08:58 / 2:54:18 - GateKeeper >

Q ETH ZENTRUM
Computer Architecture - Lecture 8: Intelligent Genome Analysis (ETH Ziirich, Fall 2020)
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https://www.youtube.com/watch?v=ygmQpdDTL7o
https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqbTBEWks1NUZ6cWVnbTVWdC1qRW0tY3paUkdjUXxBQ3Jtc0trd25qZHpmdC1nSGtkQnFjeWI1Wi1pTm5wQzBEbEdEZ05IaFdfRlN3U1h6QmxZUnNIR002cWthS0lWRkQwSU4xcVVtT2V0WkRRdkhrQUdlWExydTVyeHB4SXlERHZXODJGeWtiLTF2OXZCb2xkUWEwaw&q=https%3A%2F%2Fsafari.ethz.ch%2Farchitecture%2Ffall2020%2Flib%2Fexe%2Ffetch.php%3Fmedia%3Dalser-comparch-fall2020-lecture8-intelligent-genome-analysis-afterlecture.pptx
https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqbTBEWks1NUZ6cWVnbTVWdC1qRW0tY3paUkdjUXxBQ3Jtc0trd25qZHpmdC1nSGtkQnFjeWI1Wi1pTm5wQzBEbEdEZ05IaFdfRlN3U1h6QmxZUnNIR002cWthS0lWRkQwSU4xcVVtT2V0WkRRdkhrQUdlWExydTVyeHB4SXlERHZXODJGeWtiLTF2OXZCb2xkUWEwaw&q=https%3A%2F%2Fsafari.ethz.ch%2Farchitecture%2Ffall2020%2Flib%2Fexe%2Ffetch.php%3Fmedia%3Dalser-comparch-fall2020-lecture8-intelligent-genome-analysis-afterlecture.pdf
https://www.youtube.com/watch?v=ygmQpdDTL7o
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf

More on Fast Genome Analysis ...

Onur Mutlu,

"Accelerating Genome Analysis: A Primer on an Ongoing Journey"
Invited Lecture at Technion, Virtual, 26 January 2021.

[Slides (pptx) (pdf)]

[Talk Video (1 hour 37 minutes, including Q&A)]

[Related Invited Paper (at IEEE Micro, 2020)]

Insight: Shifting a String Helps Similarity Search

7 matches 1 mismatch

A|IN U

Onur Mutlu - Invited Lecture @Technion: Accelerating Genome Analysis: A Primer on an Ongoing Journey

566 views * Premiere d Feb 6, 2021 |. 31 0 SHARE SAVE
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https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://www.technion.ac.il/en/
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pdf
https://www.youtube.com/watch?v=r7sn41lH-4A
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf

Detailed Lectures on Genome Analysis

Computer Architecture, Fall 2020, Lecture 3a
o Introduction to Genome Sequence Analysis (ETH Zirich, Fall 2020)

o https://www.youtube.com/watch?v=CrRb32v7S]c&list=PL5Q2s0XY2Zi9xidyIgBxUz7
XRPS-wisBN&index=5

Computer Architecture, Fall 2020, Lecture 8
o Intelligent Genome Analysis (ETH Zlrich, Fall 2020)

o https://www.youtube.com/watch?v=ygmQpdDTL70&list=PL5Q2s0XY2Zi9xidyIgBxU
z7xXRPS-wisBN&index=14

Computer Architecture, Fall 2020, Lecture 9a

o GenASM: Approx. String Matching Accelerator (ETH Zirich, Fall 2020)

o https://www.youtube.com/watch?v=XoLpzmN-
Pas&list=PL5Q2s0XY2Zi9xidylgBxUz7xRPS-wisBN&index=15

Accelerating Genomics Project Course, Fall 2020, Lecture 1

o Accelerating Genomics (ETH Zurich, Fall 2020)

o https://www.youtube.com/watch?v=rgjl8ZylL sAg&list=PL5Q2s0XY2Zi9E2bBVAgCqgL
gwiDRQDTyId

SAFARI https:/ /www.youtube.com/onurmutlulectures SVl



https://www.youtube.com/watch?v=CrRb32v7SJc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=5
https://www.youtube.com/watch?v=CrRb32v7SJc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=5
https://www.youtube.com/watch?v=ygmQpdDTL7o&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=14
https://www.youtube.com/watch?v=ygmQpdDTL7o&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=14
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL5Q2soXY2Zi9E2bBVAgCqLgwiDRQDTyId
https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL5Q2soXY2Zi9E2bBVAgCqLgwiDRQDTyId
https://www.youtube.com/onurmutlulectures

Prior Research on Genome Analysis (1/2)

= Alser+, "Technology dictates algorithms: Recent developments in read
alignment", Genome Biology, 2021.

= Alser + "SneakySnake: A Fast and Accurate Universal Genome Pre-
Alignment Filter for CPUs, GPUs, and FPGAs.", Bioinformatics, 2020.

= Senol Cali+, "GenASM: A High-Performance, Low-Power Approximate
String Matching Acceleration Framework for Genome Sequence Analysis",
MICRO 2020.

= Kim+, "AirLift: A Fast and Comprehensive Technique for Translating
Alignments between Reference Genomes", arXiv, 2020

= Alser+, “Accelerating Genome Analysis: A Primer on an Ongoing Journey”,
IEEE Micro, 2020.
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https://arxiv.org/abs/2003.00110
https://arxiv.org/abs/2003.00110
https://arxiv.org/pdf/1910.09020.pdf
https://arxiv.org/pdf/1910.09020.pdf
https://arxiv.org/abs/2009.07692
https://arxiv.org/abs/2009.07692
https://arxiv.org/abs/1912.08735
https://arxiv.org/abs/1912.08735
https://arxiv.org/pdf/2008.00961.pdf

Prior Research on Genome Analysis (2/2)

Firtina+, “Apollo: a sequencing-technology-independent, scalable and
accurate assembly polishing algorithm”, Bioinformatics, 2019.

Alser+, “Shouiji: a fast and efficient pre-alignment filter for sequence
alignment”, Bioinformatics 20109.

Kim+, "GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping
Using Processing-in-Memory Technologies”, BMC Genomics, 2018.

Alser+, "GateKeeper: A New Hardware Architecture for Accelerating
Pre-Alignment in DNA Short Read Mapping”, Bioinformatics, 2017.

Alser+, "MAGNET: understanding and improving the accuracy of
genome pre-alignment filtering”, IPSI Transaction, 2017.
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https://academic.oup.com/bioinformatics/article-abstract/36/12/3669/5804978
https://academic.oup.com/bioinformatics/article-abstract/36/12/3669/5804978
https://doi.org/10.1093/bioinformatics/btz234
https://doi.org/10.1093/bioinformatics/btz234
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-018-4460-0
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-018-4460-0
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://arxiv.org/pdf/1707.01631.pdf
https://arxiv.org/pdf/1707.01631.pdf
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Challenges in Read Mapping

= Need to find many mappings of each read
= Need to tolerate variances/sequencing errors in each read

= Need to map each read very fast (i.e., performance is
important, life critical in some cases)

= Need to map reads to both forward and reverse strands
—)—

_(—

SAFAR' hitps://www.bioinformaticsalgorithms.org/bioinformatics-chapter-1 = 305



Analysis 1s Bottlenecked in Read Mapping!!

Human
genome

32 CPU hours
on a 48-core processor

Human whole
genomes
at 30x coverage

in about 2 days

Illumina NovaSeq 6000 ‘

Read Mapping = Others

71%

SAFARI Goyal+, "Ultra-fast next generation human genome sequencing data processing using DRAGENTM bio-IB06
processor for precision medicine”, Open Journal of Genetics, 2017.



https://www.scirp.org/journal/paperinformation.aspx?paperid=74603
https://www.scirp.org/journal/paperinformation.aspx?paperid=74603

What makes
read mapping
a bottleneck?

SAFARI



A Tsunami of Sequencing Data

A Tera-scale increase in sequencing production in the past 25 years

Genes & Operons 1990 Kilo = 1,000

Bacterial genomes 1995  Mega = 1,000,000

Human genome 2000 Giga = 1,000,000,000

Human microbiome 2005  Tera=1,000,000,000,000

50K Microbiomes 2015  Peta=1,000,000,000,000,000

200K Microbiomes 2020 Exa= 1,000,000,000,000,000,000

1M Microbiomes 2025  Zetta = 1,000,000,000,000,000,000,000 s°:r:ei‘des

Earth Microbiome 2030  Yotta = 1,000,000,000,000,000,000,000,000 ’
Efficient indexing of k-mer presence and abundance in sequencing datasets Rayan Chikhi, VanBUG seminar 2020
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Lack of Spectalized Compute Capability

Specialized Machine General-Purpose Machine
for Sequencing for Analysis
FAST SLOW
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Today’s Computing Systems

von Neumann model, 1945

where the CPU can access data stored in an off-chip
main memory only through power-hungry bus
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SAFARI Burks, Goldstein, von Neumann, “Preliminary discussion of the logical 310

design of an electronic computing instrument,” 1946.



The Problem

Data analysis
IS performed
far away from the data
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Data Movement Dominates Performance

= Data movement dominates performance and is a major
system energy bottleneck (accounting for 40%-62%)

Data Movement

o
o\

Sequencing Storage (SSD/HDD) Main Memory Microprocessor
Machine

Single memory request consumes >160x-800x more
energy compared to performing an addition operation

* Boroumand et al., “"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
* Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” IISWC 2013
* Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” IISWC 2014
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Read Mapping

Map reads to a known reference genome with some
minor differences allowed

DNA Sample Reads Refernteyganame
“chemical format” “text format” “text grgmat”

SAFARI 313



Metagenomics Analysis

Reads from different unknown donors at sequencing
time are mapped to many known reference genomes

genetic material recovered s <
directly from environmental
samples Reads Reference
“text format” Database
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Genomics vs. Metagenomics
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More on Metagenomic Profiling: Metalign

Nathan LaPierre, Mohammed Alser, Eleazar Eskin, David Koslicki, Serghei Mangul
“Metalign: efficient alignment-based metagenomic profiling via containment min
hash” Genome Biology, September 2020.

[Talk Video (7 minutes) at ISMB 2020]

[Source code]

B BMC Part of Springer Nature

Genome Biology -

Home About Articles Submission Guidelines

Software | Open Access | Published: 10 September 2020

Metalign: efficient alignment-based metagenomic
profiling via containment min hash

Nathan LaPierre &4, Mohammed Alser, Eleazar Eskin, David Koslicki & & Serghei Mangul

Genome Biology 21, Article number: 242 (2020) | Cite this article
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https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02159-0
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02159-0
https://www.youtube.com/watch?v=dh3RHrkbaZA
https://github.com/nlapier2/Metalign

Check Also CAMI II Paper

F. Meyer, A. Fritz, Z.L. Deng, D. Koslicki, A. Gurevich, G. Robertson,
Mohammed Alser, and others
“Critical Assessment of Metagenome Interpretation - the second

round of challenges”
bioRxiv, 2021

[Source Code]

Critical Assessment of Metagenome Interpretation - the second round of
challenges

F. Meyer,A. Fritz, Z.-L. Deng, "= D. Koslicki, A. Gurevich, G. Robertson, M. Alser, D. Antipov, ‘) F. Beghini,
D. Bertrand, J. . Brito, C.T. Brown, J. Buchmann, A. Bulug, B. Chen, R. Chikhi, PT. Clausen, A. Cristian,
P.W. Dabrowski,A. E. Darling, R. Egan, E. Eskin, E. Georganas, E. Goltsman, M.A. Gray, L. H. Hansen, S. Hofmeyr,
P.Huang, L. Irber, H. Jia, T. S. Jergensen, S. D. Kieser, T. Klemetsen, A. Kola, M. Kolmogorov, A. Korobeynikoy, J. Kwan,
N. LaPierre, © C. Lemaitre, C. Li,A. Limasset, F. Malcher-Miranda, S. Mangul,V. R. Marcelino, C. Marchet, P. Marijon,
D. Meleshko, D. R. Mende, A. Milanese, N. Nagarajan, J. Nissen, S. Nurk, L. Oliker, L. Paoli, ' P. Peterlongo,
V. C.Piro, J.S. Porter, S. Rasmussen, E. R. Rees, K. Reinert, B. Renard, E. M. Robertsen, ©2' G. L. Rosen,
H.-J. Ruscheweyh,V. Sarwal, =% N. Segata, ' E. Seiler; L. Shi, ©% F. Sun, “ S. Sunagawa, S. ]. Serensen, A. Thomas,
C.Tong, “& M.Trajkovski, =" . Tremblay, G. Uritskiy, “ R.Vicedomini, Zi.Wang, Zhe.Wang, "= Zho.Wang,
A.Warren, N. PWillassen, K. Yelick, R.You, G. Zeller, Z. Zhao, S. Zhu, J. Zhu, R. Garrido-Oter, P. Gastmeier,
S. Hacquard, S. HauBler, A. Khaledi, F. Maechler, "2/ F. Mesny, 0 S. Radutoiu, P. Schulze-Lefert, N. Smit, @ T. Strowig,
A.Bremges, A. Sczyrba, & A. C. McHardy

o (o]
doi: htps://doi.org/10.1101/2021.07.12.451567 b io RX v
317
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https://www.biorxiv.org/content/10.1101/2021.07.12.451567v1.abstract
https://www.biorxiv.org/content/10.1101/2021.07.12.451567v1.abstract
https://github.com/CAMI-challenge/second_challenge_evaluation

Check Also MiCoP

Nathan LaPierre, Serghei Mangul, Mohammed Alser, Igor Mandric, Nicholas C. Wu,
David Koslicki & Eleazar Eskin

“MiCoP: microbial community profiling method for detecting viral and fungal organisms
in metagenomic samples’

BMC Genomics, June 2019.

[Source code]

K BMC Part of Springer Nature

BMC Genomics

Research | Open Access | Published: 06 June 2019

MiCoP: microbial community profiling method for
detecting viral and fungal organisms in
metagenomic samples

Nathan LaPierre, Serghei Mangul &, Mohammed Alser, Igor Mandric, Nicholas C. Wu, David Koslicki
& Eleazar Eskin

BMC Genomics 20, Article number: 423 (2019) | Cite this article
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https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-5699-9
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-5699-9
https://github.com/smangul1/MiCoP

