Agenda for Lecture 3

- What is Genome Analysis?
- What is Intelligent Genome Analysis?
- How we Analyze Genome?
Agenda for Today

- What is Read Mapping?
- What Makes Read Mapper Slow?
- Algorithmic & Hardware Acceleration
 - Seed Filtering Technique
 - Pre-alignment Filtering Technique
 - Read Alignment Acceleration
Agenda for Today

- **What is Read Mapping?**

- What Makes Read Mapper Slow?

- Algorithmic & Hardware Acceleration
 - Seed Filtering Technique
 - Pre-alignment Filtering Technique
 - Read Alignment Acceleration
Read Mapping

Map **reads** to a known reference genome with some minor differences allowed.
Solving the Puzzle

Reference genome

Reads

.FASTA file

.FASTQ file

1990-2003: The Human Genome Project (HGP) provides a complete and accurate sequence of all DNA base pairs that make up the human genome and finds 20,000 to 25,000 human genes.
Three Decades & Yet to be Complete!

The complete sequence of a human genome

doi: https://doi.org/10.1101/2021.05.26.445798

COMPLETING THE HUMAN GENOME

Researchers have been filling in incompletely sequenced parts of the human reference genome for 20 years, and have now almost finished it, with 3.05 billion DNA base pairs.

200 million new bases

0.3% of sequence might still have errors. Includes X but not Y chromosome. Count excludes mitochondrial DNA.

SAFARI

https://www.biorxiv.org/content/10.1101/2021.05.26.445798v1
Obtaining the Human Reference Genome

- **GRCh38.p13**
- **Description**: Genome Reference Consortium Human Build 38 patch release 13 (GRCh38.p13)
- **Date**: 2019/02/28
- **3,099,706,404 bases**
- **Compressed .fna file (964.9 MB)**
How Long is DNA?

- Phi X174 virus: 5.386 Killo bp
- E. coli O157:H7: 5.44 Million bp
- Homo Sapiens: 3.2 Billion bp
- Onion, Allium Cepa: 16 Billion bp
- Paris japonica: 149 Billion bp
Obtaining .FASTQ Files

ERX215261: Whole Genome Sequencing of human TSI NA20754
1 ILLUMINA (Illumina HiSeq 2000) run: 4.1M spots, 818.7M bases, 387.2Mb downloads

Design: Illumina sequencing of library 6511095, constructed from sample accession SRS001721 for study accession SRP000540. This is part of an Illumina multiplexed sequencing run (9340_1). This submission includes reads tagged with the sequence TTAGGCAT.

Submitted by: The Wellcome Trust Sanger Institute (SC)

Study: Whole genome sequencing of (TSI) Toscani in Italia HapMap population
- PRJNA33847
- SRP000540
- All experiments
- All runs

Sample: Coriell GM20754
- SAMN00001273
- SRS001721
- All experiments
- All runs

Organism: Homo sapiens

Library:
- **Name**: 6511095
- **Instrument**: Illumina HiSeq 2000
- **Strategy**: WGS
- **Source**: GENOMIC
- **Selection**: RANDOM
- **Layout**: PAIRED
- **Construction protocol**: Standard

Runs: 1 run, 4.1M spots, 818.7M bases, 387.2Mb

<table>
<thead>
<tr>
<th>Run</th>
<th># of Spots</th>
<th># of Bases</th>
<th>Size</th>
<th>Published</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERR240727</td>
<td>4,093,747</td>
<td>818.7M</td>
<td>387.2Mb</td>
<td>2013-03-22</td>
</tr>
</tbody>
</table>
Let’s learn how to map a read
Read Mapping: A Brute Force Algorithm

Very expensive!

$O(m^2kn)$

m: read length
k: no. of reads
n: reference genome length
Mohammed Alser, Jeremy Rotman, Dhrithi Deshpande, Kodi Taraszka, Huwenbo Shi, Pelin Icer Baykal, Harry Taegyun Yang, Victor Xue, Sergey Knyazev, Benjamin D. Singer, Brunilda Balliu, David Koslicki, Pavel Skums, Alex Zelikovsky, Can Alkan, Onur Mutlu, Serghei Mangul

"Technology dictates algorithms: Recent developments in read alignment"

Genome Biology, 2021

[Source code]
Feedback From Our Community!

James Ferguson
@Psy_Fer_

This is awesome! I've got my evening reading sorted.

Stéphane Le Crom
@slecrom

Very complete article on the evolution of read alignment algorithms. #NGS #genomics

Svetlana Gorokhova
@SGorokhova

An impressive overview of read alignment methods over the last three decades

BConrerasMoreira @BrunoConrerasM · Sep 10
Replying to @mealser @GenomeBiology and 3 others
Buen hilo de repaso sobre la evolución de los algoritmos de alineamiento de secuencias a medida que ha mejorado la tecnología de secuenciación

https://twitter.com/mealser/status/1435223377644503040
Mapping a read is similar to querying the yellow pages!
Similar to Searching Yellow Pages!

- **Step 1:** Get the **page number** from the book’s **index** using a **small portion** of the name (e.g., 1st letter).

- **Step 2:** **Retrieve** the page(s).

- **Step 3:** Match the **full name** & get the phone number.
Matching Each Read with Reference Genome

.FASTA file:

>NG_008679.1:5001-38170 Homo sapiens paired box 6 (PAX6)
ACCTTCATTGACATTTACACTCTGGGCCAGGTCCATCGAGATCT
GCCATTTCCTGCGAGCGGCGGTGAGAAGGTGTGGAACGCGCTGCTGCAGCTACCTGCTCCCTGCTG
CCTCGCTCCCCAGGTAACCCGCCCAGGGCCCCGCTGGGCCGCCGGGCTCTCCGGCTG
CCAGCGACTGCTGTCCCTAAAAATCAAGCCGCCCAAGTGCCGCCGGGCTTGATTTTGCTTTTAAAGG
GAGCCATAACAGATGGAAGCGAGTTACTGAGGGAGGAAGGATAGGAAGGGGGGTGAGGGAGGAGACTTGCTT
TGCCGAGTGTAACCGTTTCAAAAATGACCTTCAACGCTCACTGTGCTGGGCTGGCCCTG
GGACTGAGTAGGGGCCGGTCTGCTGCTGCTGCTGCTGAAGCCACTGCGAGCCGCAACGGTTGCA
GGAGTTGGGAGCCTTCTCCATCCAGACCTCTCTCTGTGCATGCCAGTTC
TTCCAGTCCCCGGCTCT
GAGCTGGAGTAGGGGCCGGTCTGCTGCTGCTGCTGCTGAAGCCACTGCGAGCCGCAACGGTTGCA
GGAGTTGGGAGCCTTCTCCATCCAGACCTCTCTCTGTGCATGCCAGTTC
TCCGTACCAGCCTCTCCAGACCTCTCTCTCTGTGCATGCCAGTTC
GCCTGGACCAGATGCTGGGACCCCAACAGTCTAGAGATGGGGTTCTTTCTCAGAAAGACGC

.FASTQ file:

@HWI-EAS209_0006_FC706VJ:5:58:5894:21141#ATCACG/1
T[----------AATAAATCT----------TTAGATNNNNNNNNNTAG
+HWI-EAS209_0006_FC706VJ:5:58:5894:21141#ATCACG/1
efcccccccccccccccccccccccccccccccccccccfeed`feed`_]_Ba^___[YBBBBBBBBBBBBRTT
Step 1: Indexing the Reference Genome
Popular Indexing Technique

Hashing is the most popular indexing technique for read mapping since 1988

Alser+, "Technology dictates algorithms: Recent developments in read alignment", Genome Biology, 2021
Step 1: Indexing the Reference Genome

Index the first seed at location 1

Seed = k-mer (string of length k)

<table>
<thead>
<tr>
<th>location list</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 9 16 30</td>
</tr>
<tr>
<td>2 7 60</td>
</tr>
<tr>
<td>3 5 12</td>
</tr>
<tr>
<td>4 10 18 32</td>
</tr>
<tr>
<td>6 14</td>
</tr>
</tbody>
</table>

seed location at the reference genome
Genome Index Properties

- The index is built only once for each reference.
- Seeds can be overlapping, non-overlapping, spaced, adjacent, non-adjacent, minimizers, compressed, ...

<table>
<thead>
<tr>
<th>Tool</th>
<th>Version</th>
<th>Index Size</th>
<th>Indexing Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>mrFAST</td>
<td>2.2.5</td>
<td>16.5 GB</td>
<td>20.00 min</td>
</tr>
<tr>
<td>minimap2</td>
<td>0.12.7</td>
<td>7.2 GB</td>
<td>3.33 min</td>
</tr>
<tr>
<td>BWA-MEM</td>
<td>0.7.17</td>
<td>4.7 GB</td>
<td>49.96 min</td>
</tr>
</tbody>
</table>

*Human genome = 3.2 GB
Performance of Human Genome Indexing

Alser+, "Technology dictates algorithms: Recent developments in read alignment", Genome Biology, 2021
Step 2: Query the Index Using Read Seeds

seeds

read 1: CCT\textcolor{red}{TAG}T\textcolor{blue}{TAT}\textcolor{red}{ATATT}\textcolor{blue}{TATAC}\textcolor{red}{TAGT}\textcolor{blue}{TACGTT}

read 2: TAT\textcolor{red}{TCTG}\textcolor{blue}{TAGG}\textcolor{red}{ATCT\textcolor{blue}{ACTGTA}}\textcolor{red}{CCGCCC}

read 3: GCG\textcolor{red}{TCTATATCGG}\textcolor{blue}{TACTATATGTTGT}
Step 2: Query the Index Using Read Seeds

read 1: CCT TAG TAT A T A C T A G T G T

read 2: T A T T C T T A C G T A C T A G T A C C G C C C

read 3: G C G T C T T A T T C C G T A C T A T T A T G G T

seed location at the reference genome

seed from read 1

location list from index data structure

reference genome
Step 2: Query the Index Using Read Seeds

We can query the Hash table with substrings from reads to quickly find a list of possible mapping locations.
Step 3: Sequence Alignment (Verification)

The .bam/.sam file contains necessary alignment information (e.g., type, location, and number of each edit).
Step 3: Sequence Alignment (Verification)

- **Edit distance** is defined as the minimum number of edits (i.e. insertions, deletions, or substitutions) needed to make the read exactly match the reference segment.

<table>
<thead>
<tr>
<th>Ref</th>
<th>Read</th>
<th>Organization x operation</th>
<th>Organization x translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref Read</td>
<td>Match</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deletion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Insertion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mismatch</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Edit distance = 7**

- **Edit distance = 4**
Popular Algorithms for Sequence Alignment

Smith-Waterman remains the most popular algorithm since 1988

Hamming distance is the second most popular technique since 2008

Alser+, "Technology dictates algorithms: Recent developments in read alignment", Genome Biology, 2021
An Example of Hash Table Based Mappers

- Guaranteed to find all mappings → very sensitive
- Can tolerate up to e errors

https://github.com/BilkentCompGen/mrfast

Personalized copy number and segmental duplication maps using next-generation sequencing

Can Alkan\(^1,2\), Jeffrey M Kidd\(^1\), Tomas Marques-Bonet\(^1,3\), Gozde Aksay\(^1\), Francesca Antonacci\(^1\), Fereydoun Hormozdiari\(^4\), Jacob O Kitzman\(^1\), Carl Baker\(^1\), Maika Malig\(^1\), Onur Mutlu\(^5\), S Cenk Sahinalp\(^4\), Richard A Gibbs\(^6\) & Evan E Eichler\(^1,2\)

Performance of Read Mapping

Alser+, "Technology dictates algorithms: Recent developments in read alignment", Genome Biology, 2021
The Need for Speed

Did we realize the need for faster genome analysis?

Alser+, "Technology dictates algorithms: Recent developments in read alignment", Genome Biology, 2021
Read Mapping

Map **reads** to a known reference genome with some minor differences allowed.

DNA Sample “chemical format” → Reads “text format” → Reference genome “text format”
Metagenomics Analysis

Reads from different unknown donors at sequencing time are mapped to many known reference genomes.
Genomics vs. Metagenomics

Genomics

Metagenomics
More on Metagenomic Profiling: Metalign

Nathan LaPierre, Mohammed Alser, Eleazar Eskin, David Koslicki, Serghei Mangul

“Metalign: efficient alignment-based metagenomic profiling via containment min hash”

Genome Biology, September 2020.

Talk Video (7 minutes) at ISMB 2020

Source code
Check Also CAMI II Paper

F. Meyer, A. Fritz, Z.L. Deng, D. Koslicki, A. Gurevich, G. Robertson, Mohammed Alser, and others

“Critical Assessment of Metagenome Interpretation - the second round of challenges”

bioRxiv, 2021

[Source Code]

Critical Assessment of Metagenome Interpretation - the second round of challenges

doi: https://doi.org/10.1101/2021.07.12.451567
Check Also MiCoP

Nathan LaPierre, Serghei Mangul, Mohammed Alser, Igor Mandric, Nicholas C. Wu, David Koslicki & Eleazar Eskin

“MiCoP: microbial community profiling method for detecting viral and fungal organisms in metagenomic samples”

BMC Genomics, June 2019.
[Source code]
Challenges in Read Mapping

- Need to find many mappings of each read
- Need to tolerate variances/sequencing errors in each read
- Need to map each read very fast (i.e., performance is important, life critical in some cases)
- Need to map reads to both forward and reverse strands

https://www.bioinformaticsalgorithms.org/bioinformatics-chapter-1
Several Genome Analysis Pipelines

Reference Genomes
- **Species:** E. Coli, Human, Yeast, Zebra Fish, Mice, Fruit Fly

Basecalling
- **Sequencing Technology:** Illumina, ONT, PacBio (HiFi)
- **Species:** E. Coli, Human, Yeast, Zebra Fish, Mice, Fruit Fly

Read Set
- **Coverage:** Low 2x - 30x, Moderate 30x - 100x, High >250x
- **Read Length:** Short 100bp - 250bp, Long 200bp – 2Mbp (>200bp), HiFi 10K-20Kbp

Read Correction
- **Read Corrector:** HALC, LSC, Hercules, LoRDEC, LoRMA, Proovread, ColorMap
- **optional**

Sketching/Indexing

Mapping
- **Read Mapper:** BWA-MEM2, Minimap2, NGM-LR, Bowtie2

Assembly
- **De novo Assembler (Long Reads):** Canu
- **Miniasm (uses Minimap2)**
- **De novo Assembler (Short Reads):** ABYSS, SPAdes (small genomes)

Polishing
- **optional**
- **Assembly Polisher:** Apollo, Racon, Pilon, Quiver (PB reads), Arrow (PB reads, Not published yet), NanoPolish (ONP reads)

Variant Calling
- **Variant Caller:** LuMPY, VariationHunter, GATK, TaRDiS
- **optional**
- **Variant Caller:** Freebayes, DELLY, Platypus, SAMtools, Genome STRiP

Variant Profiling
- **Taxonomy Profiling**
- **De novo Assembler**
- **optional**
- **De novo Assembler (Long Reads):** Canu
- **Miniasm (uses Minimap2)**
- **De novo Assembler (Short Reads):** ABYSS, SPAdes (small genomes)

Coverage
- **Low 2x - 30x**
- **Moderate 30x - 100x**
- **High >250x**

Read Length
- **Short 100bp - 250bp**
- **Long 200bp – 2Mbp (>200bp)**
- **HiFi 10K-20Kbp**
Revisiting the Puzzle

Reference Genome Bias

Assembly of a pan-genome from deep sequencing of 910 humans of African descent

Rachel M. Sherman, Juliet Forman, [...] Steven L. Salzberg

Nature Genetics 51, 30–35(2019) | Cite this article

“African pan-genome contains ~10% more DNA bases than the current human reference genome”

“Switching to a consensus reference would offer important advantages over the continued use of the current reference with few disadvantages”
Analysis is Bottlenecked in Read Mapping!!

48 Human whole genomes
at 30× coverage
in about 2 days

Illumina NovaSeq 6000

1 Human genome
32 CPU hours
on a 48-core processor

Agenda for Today

- What is Read Mapping?

- **What Makes Read Mapper Slow?**

- Algorithmic & Hardware Acceleration
 - Seed Filtering Technique
 - Pre-alignment Filtering Technique
 - Read Alignment Acceleration
What makes read mapping a bottleneck?
A Tsunami of Sequencing Data

<table>
<thead>
<tr>
<th>A Tera-scale increase in sequencing production in the past 25 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genes & Operons</td>
</tr>
<tr>
<td>Bacterial genomes</td>
</tr>
<tr>
<td>Human genome</td>
</tr>
<tr>
<td>Human microbiome</td>
</tr>
<tr>
<td>50K Microbiomes</td>
</tr>
</tbody>
</table>

what is expected for the next 15 years? (a Giga?)

200K Microbiomes	2020	**Exa** = 1,000,000,000,000,000,000,000
1M Microbiomes	2025	**Zetta** = 1,000,000,000,000,000,000,000,000
Earth Microbiome	2030	**Yotta** = 1,000,000,000,000,000,000,000,000,000,000

Source: @kyrpides

Efficient indexing of k-mer presence and abundance in sequencing datasets

Rayan Chikhi, VanBUG seminar 2020
Lack of Specialized Compute Capability

Specialized Machine for Sequencing

General-Purpose Machine for Analysis

FAST

SLOW
Today’s Computing Systems

von Neumann model, 1945
where the **CPU** can **access data** stored in an off-chip main memory only through **power-hungry bus**

Burks, Goldstein, von Neumann, “Preliminary discussion of the logical design of an electronic computing instrument,” 1946.
Data analysis is performed far away from the data.
Data Movement Dominates Performance

- Data movement dominates performance and is a major system energy bottleneck (accounting for 40%-62%)

Single memory request consumes >160x-800x more energy compared to performing an addition operation

* Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
* Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” IISWC 2013
* Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” IISWC 2014
>60% of the read mapper’s execution time is spent in sequence alignment

ONT FASTQ size: 103MB (151 reads), Mean length: 356,403 bp, std: 173,168 bp, longest length: 817,917 bp
Sequence Alignment in Unavoidable

- **Quadratic-time** dynamic-programming algorithm **WHY?!**

Enumerating all possible prefixes

- NETHERLANDS x SWITZERLAND
- NETHERLANDS x S
- NETHERLANDS x SW
- NETHERLANDS x SWI
- NETHERLANDS x SWIT
- NETHERLANDS x SWITZ
- NETHERLANDS x SWITZE
- NETHERLANDS x SWITZER
- NETHERLANDS x SWITZERL
- NETHERLANDS x SWITZERLA
- NETHERLANDS x SWITZERLAN
- NETHERLANDS x SWITZERLAND

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>
Sequence Alignment in Unavoidable

- **Quadratic-time** dynamic-programming algorithm

 Enumerating all possible prefixes

- **Data dependencies** limit the computation parallelism

 Processing row (or column) after another

- **Entire matrix** is computed even though strings can be dissimilar.

 Number of differences is computed only at the backtracking step.
Computational Cost is Mathematically Proven

[Submitted on 1 Dec 2014 (v1), last revised 15 Aug 2017 (this version, v4)]

Edit Distance Cannot Be Computed in Strongly Subquadratic Time (unless SETH is false)

Arturs Backurs, Piotr Indyk

The edit distance (a.k.a. the Levenshtein distance) between two strings is defined as the minimum number of insertions, deletions or substitutions of symbols needed to transform one string into another. The problem of computing the edit distance between two strings is a classical computational task, with a well-known algorithm based on dynamic programming. Unfortunately, all known algorithms for this problem run in nearly quadratic time.

In this paper we provide evidence that the near–quadratic running time bounds known for the problem of computing edit distance might be tight. Specifically, we show that, if the edit distance can be computed in time $O(n^{2-\delta})$ for some constant $\delta > 0$, then the satisfiability of conjunctive normal form formulas with N variables and M clauses can be solved in time $M^{O(1)2^{(1-\epsilon)N}}$ for a constant $\epsilon > 0$. The latter result would violate the Strong Exponential Time Hypothesis, which postulates that such algorithms do not exist.

https://arxiv.org/abs/1412.0348
Large Search Space for Mapping Location

98% of candidate locations have high dissimilarity with a given read

Xin et al, BMC genomics (2013)
Leiserson+, "There’s plenty of room at the Top: What will drive computer performance after Moore’s law?", Science, 2020

Richard Feynman, "There’s Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics", a lecture given at Caltech, 1959.
Software & Hardware Optimizations

Multiplying Two 4096-by-4096 Matrices

```python
for i in xrange(4096):
    for j in xrange(4096):
        for k in xrange(4096):
            C[i][j] += A[i][k] * B[k][j]
```

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Running time (s)</th>
<th>Absolute speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Python</td>
<td>25,552.48</td>
<td>1x</td>
</tr>
<tr>
<td>Java</td>
<td>2,372.68</td>
<td>11x</td>
</tr>
<tr>
<td>C</td>
<td>542.67</td>
<td>47x</td>
</tr>
<tr>
<td>Parallel loops</td>
<td>69.80</td>
<td>366x</td>
</tr>
<tr>
<td>Parallel divide and conquer</td>
<td>3.80</td>
<td>6,727x</td>
</tr>
<tr>
<td>plus vectorization</td>
<td>1.10</td>
<td>23,224x</td>
</tr>
<tr>
<td>plus AVX intrinsics</td>
<td>0.41</td>
<td>62,806x</td>
</tr>
</tbody>
</table>

Leiserson+, "There’s plenty of room at the Top: What will drive computer performance after Moore’s law?", Science, 2020
FASTQ Parsing

<table>
<thead>
<tr>
<th>Program</th>
<th>Language</th>
<th>t\textsubscript{gzip} (s)</th>
<th>t\textsubscript{plain} (s)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>fqcnt_rs2_needletail.rs</td>
<td>Rust</td>
<td>9.3</td>
<td>0.8</td>
<td>needletail; fasta/4-line fastq</td>
</tr>
<tr>
<td>fqcnt_c1_kseq.c</td>
<td>C</td>
<td>9.7</td>
<td>1.4</td>
<td>multi-line fasta/fastq</td>
</tr>
<tr>
<td>fqcnt_cr1_klib.cr</td>
<td>Crystal</td>
<td>9.7</td>
<td>1.5</td>
<td>kseq.h port</td>
</tr>
<tr>
<td>fqcnt_nim1_klib.nim</td>
<td>Nim</td>
<td>10.5</td>
<td>2.3</td>
<td>kseq.h port</td>
</tr>
<tr>
<td>fqcnt_jl1_klib.jl</td>
<td>Julia</td>
<td>11.2</td>
<td>2.9</td>
<td>kseq.h port</td>
</tr>
<tr>
<td>fqcnt_js1_k8.js</td>
<td>Javascript</td>
<td>17.5</td>
<td>9.4</td>
<td>kseq.h port</td>
</tr>
<tr>
<td>fqcnt_go1.go</td>
<td>Go</td>
<td>19.1</td>
<td>2.8</td>
<td>4-line only</td>
</tr>
<tr>
<td>fqcnt_lua1_klib.lua</td>
<td>LuaJIT</td>
<td>28.6</td>
<td>27.2</td>
<td>partial kseq.h port</td>
</tr>
<tr>
<td>fqcnt_py2_rfq.py</td>
<td>PyPy</td>
<td>28.9</td>
<td>14.6</td>
<td>partial kseq.h port</td>
</tr>
<tr>
<td>fqcnt_py2_rfq.py</td>
<td>Python</td>
<td>42.7</td>
<td>19.1</td>
<td>partial kseq.h port</td>
</tr>
</tbody>
</table>
We need intelligent algorithms and intelligent architectures that handle data well.
Agenda for Today

- What is Read Mapping?
- What Makes Read Mapper Slow?

Algorithmic & Hardware Acceleration
- Seed Filtering Technique
- Pre-alignment Filtering Technique
- Read Alignment Acceleration
Accelerating Read Mapping

Ongoing Directions

- **Seed Filtering Technique:**
 - **Goal:** Reducing the number of seed (k-mer) locations.
 - **Heuristic** (limits the number of mapping locations for each seed).
 - Supports **exact** matches only.

- **Pre-alignment Filtering Technique:**
 - **Goal:** Reducing the number of *invalid mappings* (>E).
 - Supports both **exact and inexact** matches.
 - Provides some **falsely-accepted** mappings.

- **Read Alignment Acceleration:**
 - **Goal:** Performing read alignment at scale.
 - Limits the **numeric range** of each cell in the DP table and hence supports **limited scoring** function.
 - May not support **backtracking** step due to random memory accesses.
Our Contributions

Near-memory/In-memory Pre-alignment Filtering
- GRIM-Filter [BMC Genomics’18]
- GenASM [MICRO 2020]
- SneakySnake [IEEE Micro’21]

Near-memory Sequence Alignment
- GenASM [MICRO 2020]

Specialized Pre-alignment Filtering Accelerators (GPU, FPGA)
- GateKeeper [Bioinformatics’17]
- MAGNET [AACBB’18]
- Shouji [Bioinformatics’19]
- GateKeeper-GPU [arXiv’21]
- SneakySnake [Bioinformatics’20]

Sequencing Machine → Storage (SSD/HDD) → Main Memory → Microprocessor
Technology dictates algorithms: recent developments in read alignment

Mohammed Alser, Jeremy Rotman, Dhrithi Deshpande, Kodi Taraszka, Huwenbo Shi, Pelin Icer Baykal, Harry Taegyun Yang, Victor Xue, Sergey Knyazev, Benjamin D. Singer, Brunilda Balliu, David Koslicki, Pavel Skums, Alex Zelikovsky, Can Alkan, Onur Mutlu, Serghei Mangul

"Technology dictates algorithms: Recent developments in read alignment"

Genome Biology, 2021

[Source code]

Alser et al. Genome Biology (2021) 22:249
https://doi.org/10.1186/s13059-021-02443-7

REVIEW

Open Access

SAFARI
Mohammed Alser, Zülal Bingöl, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, Onur Mutlu
“Accelerating Genome Analysis: A Primer on an Ongoing Journey”
Near-memory Pre-alignment Filtering

Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, Juan Gomez-Luna, Henk Corporaal, Onur Mutlu,

“FPGA-Based Near-Memory Acceleration of Modern Data-Intensive Applications“

[Source Code]
More on Accelerating Genome Analysis ...

 - [Slides (pptx) (pdf)]
 - [Talk Video (27 minutes)]
 - [Related Invited Paper (at IEEE Micro, 2020)]

![Our Contributions Diagram](image)
More on Intelligent Genome Analysis …

- Mohammed Alser, "Computer Architecture - Lecture 8: Intelligent Genome Analysis" ETH Zurich, Computer Architecture Course, Lecture 8, Virtual, 15 October 2021. [Slides (pptx) (pdf)]
- Talk Video (2 hour 54 minutes, including Q&A)
- Related Invited Paper (at IEEE Micro, 2020)
More on Fast Genome Analysis …

- Onur Mutlu,
 "Accelerating Genome Analysis: A Primer on an Ongoing Journey"
 Invited Lecture at Technion, Virtual, 26 January 2021.
 [Slides (pptx) (pdf)]
 [Talk Video (1 hour 37 minutes, including Q&A)]
 [Related Invited Paper (at IEEE Micro, 2020)]
Detailed Lectures on Genome Analysis

- Computer Architecture, Fall 2020, Lecture 3a
 - Introduction to Genome Sequence Analysis (ETH Zürich, Fall 2020)
 - https://www.youtube.com/watch?v=CrRb32v7SJc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=5

- Computer Architecture, Fall 2020, Lecture 8
 - Intelligent Genome Analysis (ETH Zürich, Fall 2020)
 - https://www.youtube.com/watch?v=ygmQpdDTL7o&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=14

- Computer Architecture, Fall 2020, Lecture 9a
 - GenASM: Approx. String Matching Accelerator (ETH Zürich, Fall 2020)
 - https://www.youtube.com/watch?v=XoLpzmN-Pas&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=15

- Accelerating Genomics Project Course, Fall 2020, Lecture 1
 - Accelerating Genomics (ETH Zürich, Fall 2020)
 - https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL5Q2soXY2Zi9E2bBVAgCqLgwiDRQDTyId

https://www.youtube.com/onurmutlulectures
Prior Research on Genome Analysis (1/2)

- Alser + "SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment Filter for CPUs, GPUs, and FPGAs.", *Bioinformatics*, 2020.

Prior Research on Genome Analysis (2/2)

