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TargetCall Summary
Motivation: Basecalling consumes up to 84.2% of total execution time                                    
and bottlenecks the genome analysis pipeline
Problem: The majority of the reads do not match the reference genome (i.e., useless reads) 
and thus are discarded after basecalling, wasting the basecalling computation
Goal: Eliminating the wasted computation in basecalling while maintaining high accuracy, 
scalability and adaptability
Key Idea: Filter out useless reads before basecalling with a highly accurate                          
and high-performance pre-basecalling filter
TargetCall: New pre-basecalling filter
• LightCall: A light-weight basecaller that computes noisy reads with high performance
• Similarity Check: Computes the similarity of the noisy read to the reference genome
Results:
• Improves the end-to-end performance of basecalling by 3.3× over the state-of-the-art 

basecaller by filtering out 94.7% of the useless reads
• Achieves better performance, throughput, recall and precision than the state-of-the-art 

targeted sequencing approaches.
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Background and Motivation

TargetCall Outline
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TargetCall: Pre-Basecalling Filter

Use Cases

Evaluation

Conclusion



Genome Sequence Analysis
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Genome Sequencing: Enables us to determine the order of 
the DNA sequence in an organism’s genome

• Plays a pivotal role in:
• Precision medicine
• Outbreak tracing
• Understanding of evolution

Nanopore Sequencing: a widely used sequencing 
technology that
• Produces long reads (i.e., 10Kbp-100Mbp)
• Has high throughput
• Is low cost



Option 1: Traditional Pipeline
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Traditional Nanopore Sequence Analysis Pipeline

Genome sequencing Basecalling

Mapped
Unmapped

A T G C

Read Mapping

Reference genome
T GG A C A T G C G C A A ACA

Basecalling consumes up to 84.2% of the execution time [Bowden+ 2019]
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Option 1: Traditional Pipeline
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Traditional Nanopore Sequence Analysis Pipeline

Genome sequencing Basecalling

Mapped
Unmapped

A T G C

Read Mapping

Reference genome
T GG A C T T T A G C A A ACA

Basecalling consumes up to 84.2% of the execution time [Bowden+ 2019]
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Traditional Pipeline

Execution Time Breakdown

Basecalling Downstream Analysis

Basecalling is a major bottleneck in
nanopore sequence analysis pipeline



Read Fraction

SARS-CoV-2 Human

Key Observation
Majority of the basecalled reads are discarded in the later 
downstream analysis
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SARS-CoV-2 Genome Assembly: 
[Dunn+, 2021]

A read is useless if it does not match the reference genome  

usefulprocessed



Read Fraction

SARS-CoV-2 Human

Key Observation
Majority of the basecalled reads are discarded in the later 
downstream analysis
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SARS-CoV-2 Genome Assembly: 
[Dunn+, 2021]

A read is useless if it does not match the reference genome  

usefulprocessed
Useless reads waste basecalling computation 

in traditional pipeline



Option 2: Targeted Sequencing
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Traditional Pipeline: Sequence all reads

Targeted Sequencing Basecalling

Genome Sequencing Basecalling Read Mapping

Reference genome
T GG A C T T T A G C A A ACA

Mapped
Unmapped

G T C C
A T G C
A T G A

Targeted Sequencing: Selectively sequence useful reads

Nanopore sequencers can stop sequencing useless reads

Mapped
Unmapped

Read Mapping

Reference genome
T GG A C T T T A G C A A ACAA T G C



Option 2: Targeted Sequencing
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Traditional Sequencing: Sequence all reads

Targeted Sequencing Basecalling

Mapped
Unmapped

A T G C

Read Mapping

Reference genome
T GG A C T T T A G C A A ACA

Genome Sequencing Basecalling Read Mapping

Reference genome
T GG A C T T T A G C A A ACA

Mapped
Unmapped

G T C C
A T G C
A T G A

Targeted Sequencing: Selectively sequence reads from the target reference

Nanopore sequencers can stop sequencing of useless reads

Targeted sequencing requires a method 
to identify useless reads 



Targeted Sequencing Limitations
Current targeted sequencing approaches to identify useful 
reads suffer at least from one of the following:
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Low Sensitivity

Falsely reject many useful reads

Poor Scalability

Have poor performance and accuracy for large reference genomes

Lack of Adaptability
Require neural network training for each genome sequencing use case



Targeted Sequencing Limitations
Current targeted sequencing approaches to identify useful 
reads suffer at least from one of the following:
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Low Sensitivity

Falsely reject many useful reads

Poor Scalability

Have poor performance and accuracy for large reference genomes

Lack of Adaptability
Require neural network training for each genome sequencing use case

Targeted sequencing approaches are not robust for 
eliminating the wasted computation in basecalling



Our Goal
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Eliminate the wasted computation in basecalling 
while maintaining high sensitivity in keeping useful reads,

scalability to large reference genomes and adaptability.



TargetCall Outline
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Genome Sequencing

Our Proposal: Pre-Basecalling Filter
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Basecalling

A T G C

Pre-Basecalling Filter

Our Proposal - Pre-Basecalling Filter: 
Selectively basecall useful reads

Genome Sequencing

useful

useless

Option 1 - Traditional Pipeline: 
Sequence & basecall all reads

Basecalling

Option 2 – Targeted Sequencing: 
Sequence selectively
Targeted Sequencing Basecalling



TargetCall

TargetCall Overview
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useful?

useless

useful

Basecaller to compute 
noisy reads

LightCall

Compares noisy reads to 
reference genome

Similarity Check

Basecaller

Stop Analysis



TargetCall Overview
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TargetCall has:

High Sensitivity

with its highly accurate Similarity Check component

Good Scalability

with a reference genome size independent LightCall model

Adaptability

with a generic LightCall model that does not require NN retraining



TargetCall Overview
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TargetCall has:

High Sensitivity

with its highly accurate Similarity Check component

Good Scalability

with a reference genome size independent LightCall model

Adaptability

with a generic LightCall model that does not require NN retraining

TargetCall is a robust solution for 
eliminating the wasted computation in basecalling



LightCall
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A light-weight basecaller

Basecaller

A T G C A G T C A C

LightCall

that produces noisy reads

A T G C A T T C A C

TargetCall

LightCall

Similarity 
Check

LightCall



LightCall
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Design based on by simplifying the state-of-the-art basecaller
model architectures while maintaining most accuracy benefits

LightCall:

3 simplification steps:

1. Reduce channel sizes of convolution layers

2. Remove skip connections

3. Reduce number basic convolutional blocks

SOTA basecaller:



LightCall
LightCall is a series of convolutional blocks
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CTC

Conv-BN-ReLU

Conv-BN-ReLU

Conv-BN-ReLU

Conv-BN-ReLU

Pointwise Conv

Batch Norm

ReLU

Grouped Conv

Pointwise Conv

Batch Norm

ReLU

Grouped Conv

Each block has 1 or 2 such components 



Similarity Check
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useless useful

similar

ACCTAGACCA

GACTACGTAGATCATACG

noisy read:

ref. genome:

• Similarity Check module: minimap2

• LightCall + Similarity Check:
Up to 99.45% sensitive in keeping useful reads
• 0.55% can be tolerated via sequencing-depth-of-coverage

TargetCall

LightCall

Similarity 
Check

Similarity 
Check



TargetCall Outline
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TargetCall Use Cases
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1. SARS-CoV-2 Detection 
Reference Genome: Small (SARS-CoV-2)
Reads: SARS-CoV-2 & Human

2. Viral Detection 
Reference Genome : Complex (Viral) 
Reads: Bacterial & Viral

3. Sepsis Detection 
Reference Genome : Large (Human) 
Reads: Bacterial & Human

Show the scalability and adaptability of TargetCall:

useless
No

usefulYes

similar?

useless
No

usefulYes

similar?

useful
No

uselessYes

similar?



TargetCall Outline
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Evaluation Methodology - Experiments
1. Benefits of Pre-Basecalling Filtering
• Baseline: Bonito
• Methodology: Compare                                   and

• Evaluation Metric: Basecalling speedup
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Bonito
Bonito

TargetCall

2. Comparison against Targeted Sequencing
• Baseline: UNCALLED [Kovaka+, 2020] & Sigmap [Zhang+, 2021]
• Methodology: Repurpose labelling mechanism of the targeted 

sequencing approaches as pre-basecalling filters, compare:

• Evaluation Metric: Execution time, recall and precision

Bonito

TargetCall

Bonito

UNCALLED

Bonito

Sigmap



Evaluation Methodology - Datasets
Read Sets:
• 5 different read sets from various organisms
• 4 read sets are sampled from prior work [Wick+ 2019, Zook+ 2019, CADDE 2020]

• 1 simulated read set using DeepSimulator
• We open source the datasets

Reference Genomes: 
• 4 different reference genomes with various
• Reference genome size
• Ratio of useful reads
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Evaluation Methodology - System

We evaluate TargetCall using:
• NVIDIA A100 and TITAN V GPU for LightCall
• AMD EPYC 7742 CPU with ~0.2 TB DDR4 DRAM for Similarity Check

We evaluate Sigmap and UNCALLED using:
• AMD EPYC 7742 CPU with ~1 TB DDR4 DRAM
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Sigmap and UNCALLED require more than
0.2 TB of DRAM for large reference genomes 



TargetCall – Basecalling Speedup
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Comparison to SOTA - Performance (1/3)

31

TargetCall provides 1.5x/9.7x speedup 
over UNCALLED/Sigmap
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Comparison to SOTA - Performance (1/3)

32

TargetCall provides higher speedup improvement with 
a large reference genome:

- 13.3x speedup over Sigmap
- UNCALLED is inapplicable: cannot generate the index
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Comparison to SOTA - Recall (2/3)
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TargetCall provides 23.2%/3.1% better recall 
over Sigmap/UNCALLEDOn average, TargetCall’s recall is 99.1%



Comparison to SOTA - Recall (2/3)
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TargetCall’s recall benefits improve (21.9%-10.3%)  
with increasing reference genome size
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Sepsis use case doesn’t measure the recall for finding human reads

The recall for finding human reads:
- Sigmap/UNCALLED: 40.6%/53.7% 
- TargetCall: 96.2%
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Comparison to SOTA - Recall (2/3)
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Sepsis use case doesn’t measure the recall for finding human reads

The recall for finding human reads:
- Sigmap/UNCALLED: 40.6%/53.7% 
- TargetCall: 96.2%

TargetCall consistently provides high recall 
for all reference genome sizes tested



Comparison to SOTA - Precision (3/3)
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TargetCall provides 62.3%/58.5% better precision 
over Sigmap/UNCALLEDOn average, TargetCall’s precision is 92.1%



More Details in the Paper
•Details of targeted sequencing

•Details of LightCall design

•More details on evaluation methodology

•More evaluation results
• Basecalling speedup, recall and precision of different 

LightCall architectures to finalize the TargetCall design
• End-to-end accuracy analysis using relative abundances
• End-to-end performance results including variant calling
• Throughput comparison: 42x/1124x over Sigmap/UNCALLED
• Peak memory discussion
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More Details in the Paper
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bioRxiv Code



TargetCall – GitHub Page
Artifacts are open-sourced
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https://github.com/CMU-SAFARI/TargetCall

https://github.com/CMU-SAFARI/TargetCall


TargetCall Outline
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TargetCall Summary

TargetCall: An accurate, scalable and adaptable pre-basecalling filter:
• LightCall: A light-weight basecaller that computes noisy reads                          

with high performance
• Similarity Check: Computes the similarity of the noisy read                                  

to the reference genome

Results:
• TargetCall significantly improves basecalling performance for three sample use 

cases by filtering out majority of the useless reads
• Achieves better recall, precision, performance and throughput than the state-of-

the-art targeted sequencing approaches repurposed as pre-basecalling filters
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Targeted Sequencing
Set of techniques to discard off-target reads during sequencing
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Some of these works can be partially 
repurposed  as pre-basecalling filters.

Machine 
Learning

SquiggleNet
BaseLess

Raw Signal
Comparison 

Sigmap
SquiggleFilter

Sequence 
Comparison

ReadFish
UNCALLED



Basecalling
Basecallers use complex DNN models
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They split the raw signals into fixed length chunks

1

They basecall chunks independently2
ACGTA GAGGC TCTC GACTCA

They stitch the chunks back3
ACGTAGAGGCTCTCGACTCA



Evaluation – System Configuration
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TargetCall evaluation system:



Evaluation – Training Setting 

Dataset for training and validation: publicly available ONT 
dataset sequenced using MinION Flow Cell (R9.4.1)

Optimizer: Adam with 
• learning rate: 2e–3
• beta value: 0.999
• weight decay: 0.01
• epsilon:1e–8
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TargetCall Design – Recall (1/6)
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TargetCall provides up to 99.45% recall.



TargetCall Design – Recall (1/6)
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TargetCall’s recall improves as 
the model complexity of LightCall increases



TargetCall Design – Precision (2/6)
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TargetCall can filter out up to 96.03% of 
useless reads
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TargetCall Design – Performance (3/6)
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TargetCall provides up to 3.31x basecalling speedup.



TargetCall Design – Performance (3/6)
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TargetCall’s performance improves with 
decreasing LightCall complexity 

until the filtering precision is too low 



TargetCall Design – EtE Accuracy (4/6)
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TargetCall affects the relative abundances slightly.



TargetCall Design – EtE Performance (5/6)
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TargetCall provides up to 3x end-to-end speedup over the 
entire genome analysis pipeline including variant calling
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TargetCall Design – Best Model (6/6)
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LC-main provides the best recall-performance trade-off
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Comparison to SOTA - Throughput (4/4)
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LightCall provides 42x/1124x more throughput 
over Sigmap/ UNCALLED
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Comparison to SOTA - Throughput (4/4)
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LightCall’s throughput is consistently high for 
all reference genome sizes tested
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over Sigmap/ UNCALLED



Comparison to SOTA - Throughput (4/4)
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TargetCall’s benefits can be further amplified by
1. Chunk based early filtering
2. Pipelining LightCall and Similarity Check

LightCall’s high throughput is not reflected to performance: 
1. TargetCall processes entire read
2. LightCall and Similarity Check are not pipelined


