P&S Genomics Lecture 13a: RawHash

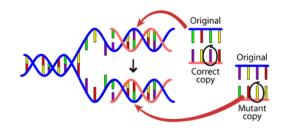
Can Firtina

ETH Zürich Spring 2023 1 June 2023

Enabling Fast and Accurate Real-Time Analysis of Raw Nanopore Signals for Large Genomes

Can Firtina, Nika Mansouri Ghiasi, Joel Lindegger, Gagandeep Singh, Meryem Banu Cavlak, Haiyu Mao, Onur Mutlu

Source Code

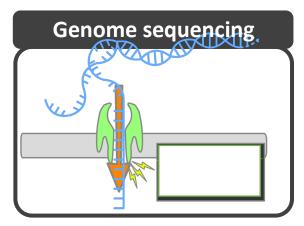

Executive Summary

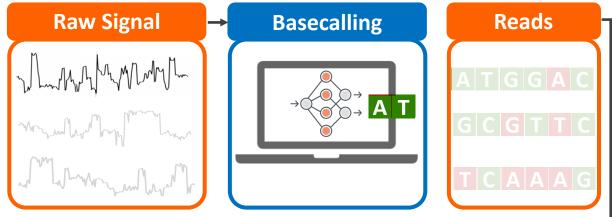
Problem	Performing real-time genome analysis is inaccurate and inefficient for large genomes, causing serious barriers in fully exploiting the opportunities in real-time genome analysis
Goal	Enable efficient and accurate analysis for large genomes while the raw sequencing data is generated in real-time
RawHash	 Encodes the raw sequencing data into hash values to accurately and efficiently identify similarities by matching their hash values Makes real-time decisions that can stop sequencing a DNA molecule without fully sequencing it Proposes Sequence Until that can accurately and dynamically stop the entire sequencing of all DNA molecules at once
Key Results	 Up to 2x more accurate mapping results 25.8x and 3.4x better average throughput compared to UNCALLED and Sigmap, respectively The Sequence Until techniques enables reducing the sequencing time and cost by 15x

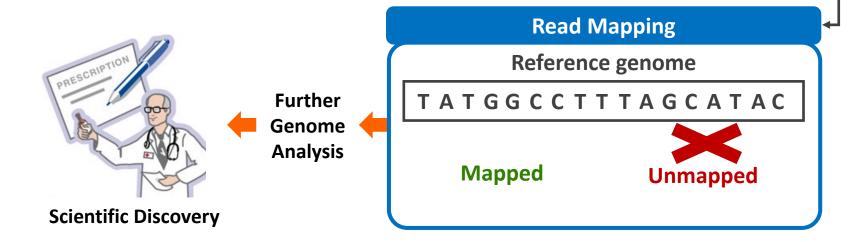
Genome Analysis

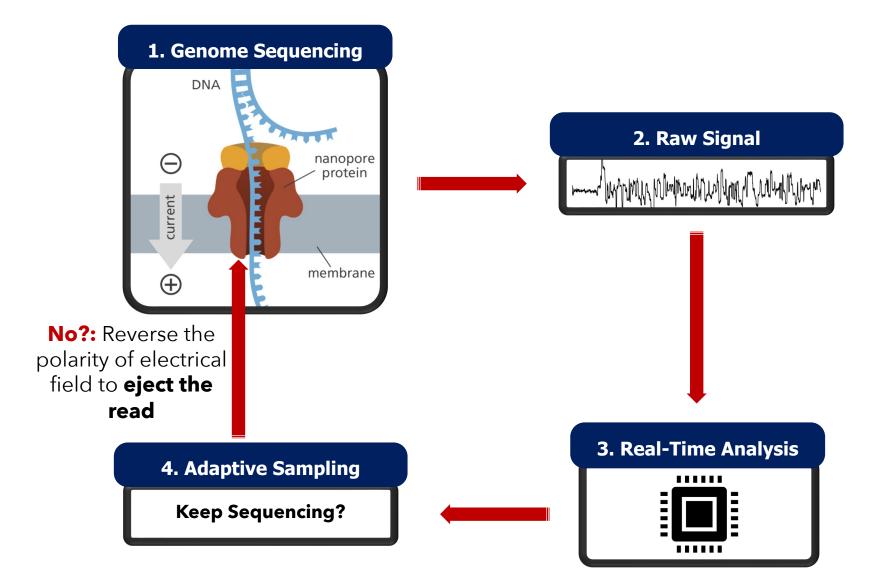
Genome Sequencing: Enables us to determine the order of the DNA sequence in an organism's genome

- Plays a pivotal role in:
 - Precision medicine
 - Outbreak tracing
 - Understanding of evolution




Nanopore Sequencing: a widely used sequencing technology


- Can sequence large fragments of DNA (i.e., 10Kbp 2Mbp)
- Has high throughput
- Low cost
- Provides unique features


Traditional Genome Analysis Pipeline

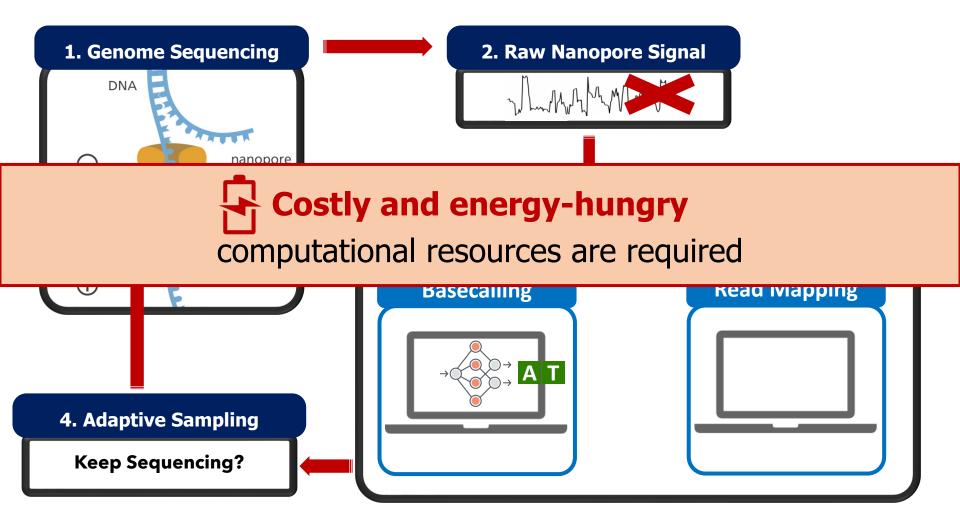
Real-Time Genome Analysis

Objectives in Real-Time Genome Analysis

Fast analysis that can match the throughput of sequencer

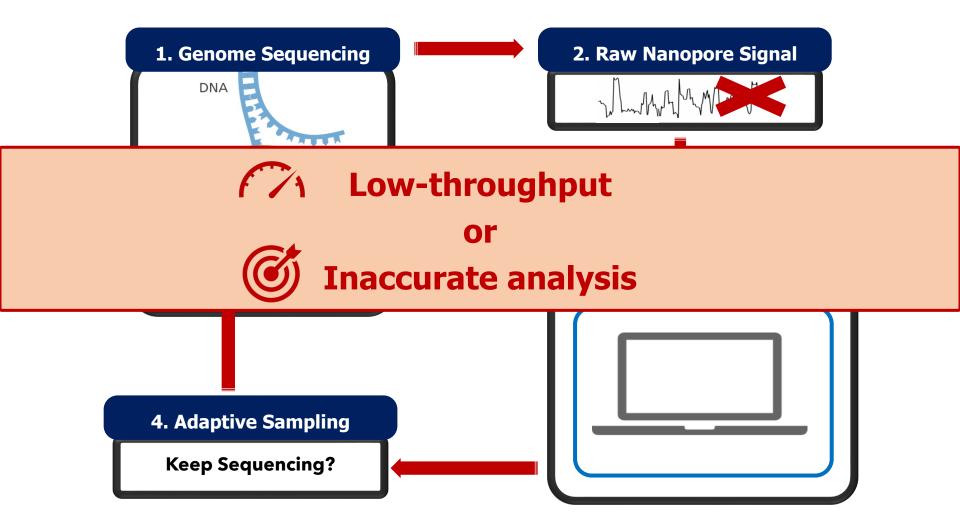
Fast decision to reduce the sequencing time and cost with effective use of adaptive sampling

Accurate analysis from noisy raw signal data


Low-power to enable portable sequencing and better scalability

SAFARI

Cs


Solutions for Real-Time Analysis

1. Using deep neural networks (DNNs) to basecall and map reads

Solutions for Real-Time Analysis

2. Mapping signals without basecalling

Outline

Background

Goal and Key Ideas

RawHash

Evaluation


Conclusions

Fast analysis that can scale to large genomes

Fast decisions for adaptive sampling to reduce sequencing time and cost

Accurate analysis for large genomes

Cs

The first mechanism that can **efficiently and accurately map** raw signals to large reference genomes **using an efficient hash-based search**

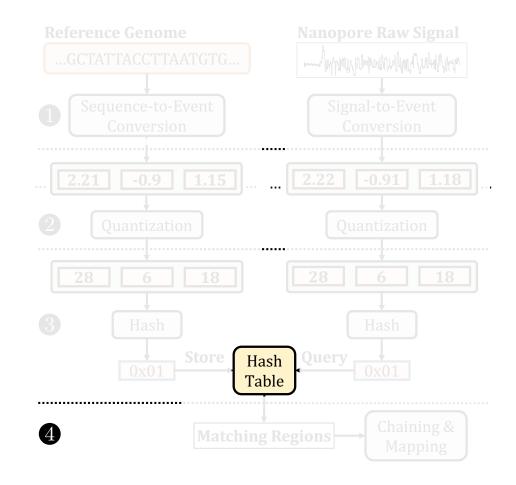
Proposes **Sequence Until**, a novel mechanism that can **dynamically decide** if further sequencing of reads is unnecessary to **stop the entire sequencing**

Outline

Background

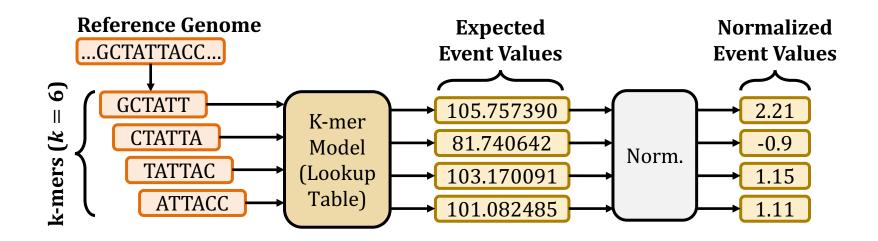
Goal and Key Ideas

RawHash

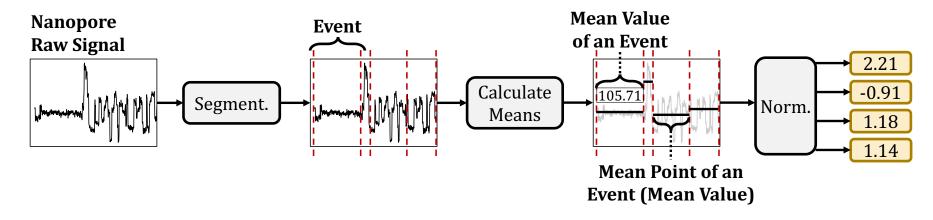

Evaluation

Conclusions

RawHash Overview


Two steps: Indexing (offline) and mapping (real-time)

- **1. Indexing:** Generate hash values from the expected signals of a reference genome
- 2. Mapping: Generate hash values from raw nanopore signals and match the hash values with the reference hash values

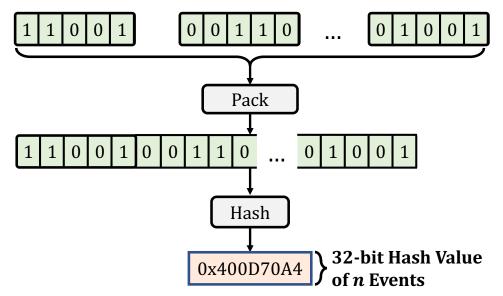

Sequence-to-Signal Conversion

- **Goal:** Enable analysis between reference and read signals without basecalling
 - Identify the corresponding signal value of all overlapping fixed-length subsequences (k-mers)

Read Signal Processing

- Goal: Identify regions of signals corresponding to k-mers in a read
 - Perform a statistical test to identify the abrupt changes in the signal corresponding to a particular k-mer of a read

- Observation: Nanopore sequencers do not generate exactly the same signal when sequencing the same DNA content
 - Those signals are still **slightly similar** to each other
 - How can we leverage this? Distance calculations?


Quantizing the Event Values

- Goal: Include the similar values to same buckets (quantized values)
- 1. Use the binary representations of signal values (floating-point)
- 2. Take the most significant Q bits (to quantize)
- 3. Ignore the p bits in the middle (do not add much value)

Hashing for Efficient Search

- Goal: Enable finding efficient similarity detection between signals
- 1. Pack the quantized values of consecutive k-mers
- 2. Hash the packed value to generate a hash value
- 3. Use efficient data structures (e.g., hash tables) to identify regions with the same hash

Quantized Values (in binary) of *n* Consecutive Events:

Outline

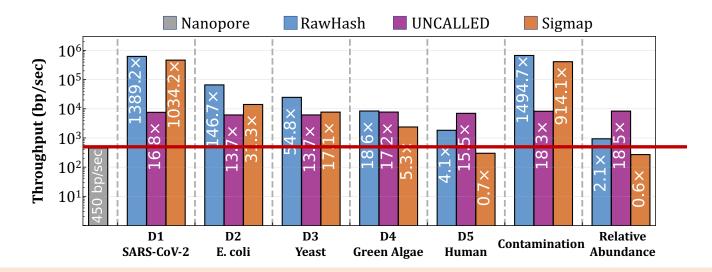
Background

Goal and Key Ideas

RawHash

Evaluation

Conclusions

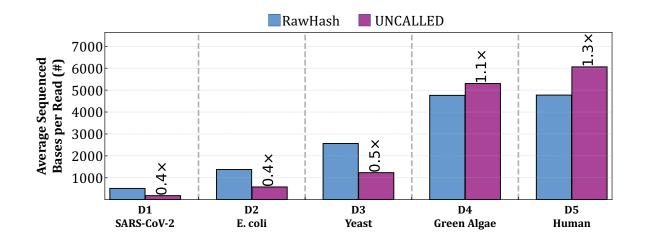


Evaluation Methodology

- Datasets from very small (viral) to large genomes (human and metagenomics)
- Compared with UNCALLED and Sigmap
 - RawHash, UNCALLED, and Sigmap do not require powerful computational resources (e.g., GPUs) to achieve efficient and portable genome analysis
- Use cases
 - 1. Read mapping
 - 2. Relative abundance estimation
 - 3. Contamination analysis
- Benefits of Sequence Until

Performance

- Throughput (bases per second)
 - Throughput of a nanopore sequencer: 450 bp/sec



Fast Analysis: Both RawHash and UNCALLED can match the throughput of nanopore

Sigmap falls behind the throughput of nanopores for larger genomes

Sequencing Time and Cost

- Number of bases that needs to be sequenced before making a decision to eject the read
 - Lower is better (cheaper and faster sequencing)

Fast Decision: RawHash reduces the sequencing time and cost for large genomes than UNCALLED

Accuracy

• Accuracy of genome analysis in three use cases

Dataset		UNCALLED	Sigmap	RawHash	Dataset	I	UNCALLED	Sigmap	RawHash
	R	ead Mapping				Relative Abu	undance Estima	ation	
D1 SARS-CoV-2	Precision Recall F_1	0.9547 0.9910 0.9725	0.9929 0.5540 0.7112	0.9868 0.8735 0.9267	D1-D5	Precision Recall F ₁	0.7683 0.1273 0.2184	0.7928 0.2739 0.4072	0.9484 0.3076 0.4645
D2 E. coli	Precision Recall	0.9816 0.9647 0.9731	0.9842 0.9504 0.9670	0.9573 0.9009 0.9282		Contami Precision	nation Analysi 0.9378	s 0.7856	0.8733
D3 Yeast	F_1 Precision Recall F_1	0.9459 0.9366 0.9412	0.9856 0.9123 0.9475	0.9282 0.9862 0.8412 0.9079	D1, D5	Recall F ₁	0.9910 0.9637	0.5540 0.6498	0.8735 0.8734
D4 Green Algae	$\frac{F_1}{Precision}$ Recall F_1	0.8836 0.7778 0.8273	0.9741 0.8987 0.9349	0.9691 0.7015 0.8139	_				
D5 Human HG001	Precision Recall F ₁	0.4867 0.2379 0.3196	0.4287 0.2641 0.3268	0.8959 0.4054 0.5582	1				

Accurate Analysis: RawHash provides the best accuracy for large genomes

Relative Abundance Estimations

- Estimating the relative abundance of each genome compared to the baseline as generated by minimap2
 - Distance: Euclidean distance (L2-norm) compared to the ground truth distance

Estimated Relative Abundance Ratios						
Tool	SARS-CoV-2	E. coli	Yeast	Green Algae	Human	Distance
Ground Truth	0.0929	0.4365	0.0698	0.1179	0.2828	N/A
UNCALLED	0.0026	0.5884	0.0615	0.1313	0.2161	0.1895
Sigmap	0.0419	0.4191	0.1038	0.0962	0.3390	0.0877
RawHash	0.1249	0.4701	0.0957	0.0629	0.2464	0.0847

Accurate Analysis: RawHash provides the relative abundance estimations closest to the ground truth

The Sequence Until Mechanism

- **Key Insight:** Do we need to keep sequencing **the entire sample** for all applications in genome analysis?
- Use case example: Can we predict the relative abundance estimation by sequencing only a portion of the sample and still provide accurate results?
- **Potential Benefits:** Reduced sequencing time and costs by avoiding full sequencing

	Estimated Relative Abundance Ratios						
Tool	SARS-CoV-2	E. coli	Yeast	Green Algae	Human	Distance	
Ground Truth	0.0929	0.4365	0.0698	0.1179	0.2828	N/A	
UNCALLED (25%)	0.0026	0.5890	0.0613	0.1332	0.2139	0.1910	
RawHash (25%)	0.0271	0.4853	0.0920	0.0786	0.3170	0.0995	
UNCALLED (10%)	0.0026	0.5906	0.0611	0.1316	0.2141	0.1920	
RawHash (10%)	0.0273	0.4869	0.0963	0.0772	0.3124	0.1004	
UNCALLED (1%)	0.0026	0.5750	0.0616	0.1506	0.2103	0.1836	
RawHash (1%)	0.0259	0.4783	0.0987	0.0882	0.3088	0.0928	
UNCALLED (0.1%)	0.0040	0.4565	0.0380	0.1910	0.3105	0.1242	
RawHash (0.1%)	0.0212	0.5045	0.1120	0.0810	0.2814	0.1136	
UNCALLED (0.01%)	0.0000	0.5551	0.0000	0.0000	0.4449	0.2602	
RawHash (0.01%)	0.0906	0.6122	0.0000	0.0000	0.2972	0.2232	

Benefits of Sequence Until

- Sequence Until mechanism dynamically analyzes the results of a genome analysis use case to find outliers in the analysis
- If no outlier in the previous estimations
 - Further sequencing is unlikely to change the analysis significantly
 - Stop the **entire sequencing**: Significant reduction in sequencing time and cost

	0 Random	Reads				
Tool	SARS-CoV-2	E. coli	Yeast	Green Algae	Human	Distance
RawHash (100%)	0.0270	0.3636	0.3062	0.1951	0.1081	N/A
RawHash + Sequence Until (7%)	0.0283	0.3539	0.3100	0.1946	0.1133	0.0118

Sequence Until dynamically stops the entire sequencing after sequencing only 7% of the entire sample while high accuracy

Sequencing only a portion of the sample significantly reduces sequencing time and cost (~15x reduction)

Outline

Background

Goal and Key Ideas

RawHash

Evaluation

Conclusions

RawHash Summary

Problem	Performing real-time genome analysis is inaccurate and inefficient for large genomes, causing serious barriers in fully exploiting the opportunities in real-time genome analysis
Goal	Enable efficient and accurate similarity identification between raw signals
RawHash	 Encodes the similar signal values into the same quantized value to alleviate the noise issues in raw signals Generates hash values from quantized values to efficiently identify similarities between signals based on hash value matches Proposes Sequence Until that can accurately and dynamically stop the entire sequencing
Key Results	 Up to 2x more accurate mapping results 25.8x and 3.4x better average throughput compared to UNCALLED and Sigmap, respectively The Sequence Until techniques enables reducing the

RawHash

 <u>Can Firtina</u>, Nika Mansouri Ghiasi, Joel Lindegger, Gagandeep Singh, Meryem Banu Cavlak, Haiyu Mao, and Onur Mutlu, <u>"RawHash: Enabling Fast and Accurate Real-Time Analysis of Raw</u> <u>Nanopore Signals for Large Genomes"</u> *Proceedings of the <u>31st Annual Conference on Intelligent Systems for Molecular</u> <i>Biology (ISMB) and the 22nd European Conference on Computational Biology* (*ECCB*), Jul 2023 [arXiv preprint] [Source Code]

Bioinformatics, 2023, 00, i1–i11 https://doi.org/10.1093/bioinformatics/btad272 ISMB/ECCB 2023

OXFORD

RawHash: enabling fast and accurate real-time analysis of raw nanopore signals for large genomes

Can Firtina () ^{1,}*, Nika Mansouri Ghiasi () ¹, Joel Lindegger () ¹, Gagandeep Singh () ¹, Meryem Banu Cavlak () ¹, Haiyu Mao () ¹, Onur Mutlu () ^{1,}*

¹Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland

*Corresponding author. Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland. E-mail: firtinac@ethz.ch (C.F.), omutlu@ethz.ch (0.M.)

RawHash Source Code

E README.md

RawHash

genomes (e.g., human genome.

genome and a raw nanopore signal.

⊙ Unwatch 5 - 및

~

CMU-SAFARI / RawHash Public

Code 🕑 Issues 1 1 12 Pull requests 🕞 Actions 🖽 Projects 🕮 Wiki 🙂 Security 🖂 Insights 🕸 Settings

ੇ main 👻 🖁 1 branch	🛇 0 tags	Go to file	Add file -	<> Code -
canfirtina Fixing the ou	utdated link for d3_yeast_r94	fab4f59	2 weeks ago	312 commits
extern	ZSTD sobmodule for POD5			2 months ago
gitfigures	Initial code			4 months ago
src	Linking pthread and std c++			last month
test	Fixing the outdated link for d3_yeast_r94			2 weeks ago
.gitignore	POD5 support			2 months ago
gitmodules	ZSTD sobmodule for POD5			2 months ago
LICENSE	Initial code			4 months ago
Makefile	Initial code			4 months ago
B README.md	POD5 support			2 months ago
code_of_conduct.md	Moving to multiple headers than a single	one to improve ac	aptability	3 months ago

about 🌼
RawHash is the first mechanism that can
accurately and efficiently map raw
nanopore signals to large reference
genomes (e.g., a human reference
genome) in real-time without using
oowerful computational resources (e.g.,
GPUs). Described by Firtina et al.
preliminary version at
https://www.biorxiv.org/content/10.1101/2
023.01.22.525080v1)

🛇 Edit Pins 👻

9	www	biorxiv.org	g/conten	t/10.110	1/2023.

nanopore s	eeding
event-detection	1
hash-tables	
read-mapping	
ces	
cing	
s-pipeline	
nanopore-da	ta
raw-signal	rawhash
nal-analysis	
	event-detection hash-tables read-mapping tes cing s-pipeline nanopore-dai raw-signal

ци Readine

0

- 4章 GPL-3.0 license
- Code of conduct
- ☆ 8 stars
- 5 watching
- 앟 1 fork
- Report repository

https://github.com/CMU-SAFARI/RawHash

Reference Genome

...GCTATTACCTTAATGTG ...

RawHash is a hash-based mechanism to map raw nanopore signals to a reference genome in real-time. To achieve this, it 1) generates an index from the reference genome and 2) efficiently and accurately maps the raw signals to

the reference genome such that it can match the throughput of nanopore sequencing even when analyzing large

Below figure shows the overview of the steps that RawHash takes to find matching regions between a reference

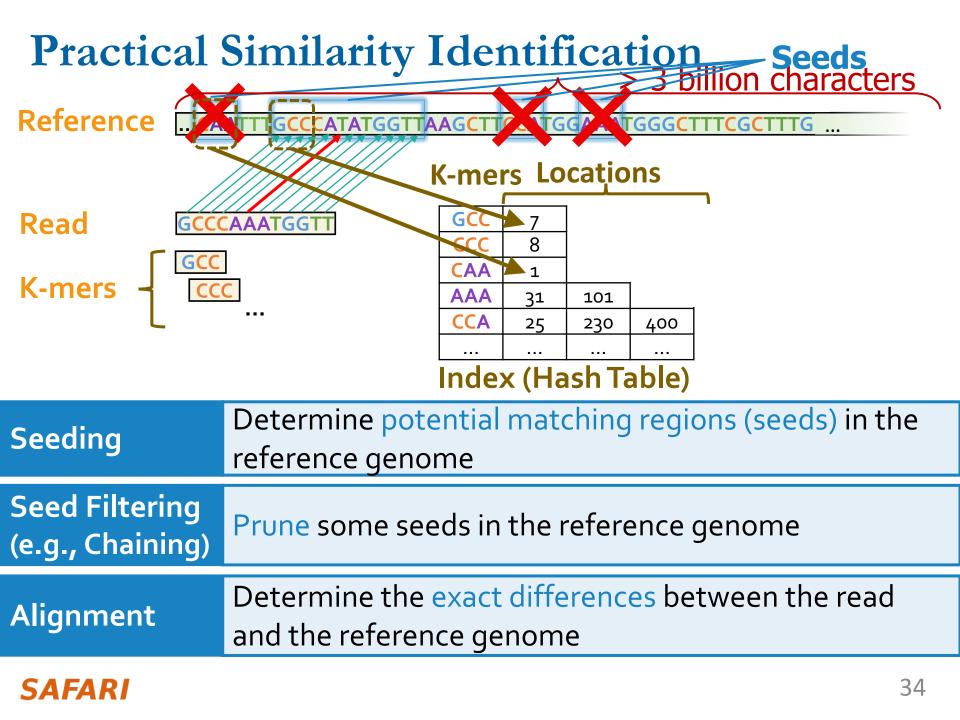
Nanopore Raw Signal

-injunitionalistic field and

Enabling Fast and Accurate Real-Time Analysis of Raw Nanopore Signals for Large Genomes

Can Firtina, Nika Mansouri Ghiasi, Joel Lindegger, Gagandeep Singh, Meryem Banu Cavlak, Haiyu Mao, Onur Mutlu

Source Code


P&S Genomics Lecture 13a: RawHash

Can Firtina

ETH Zürich Spring 2023 1 June 2023

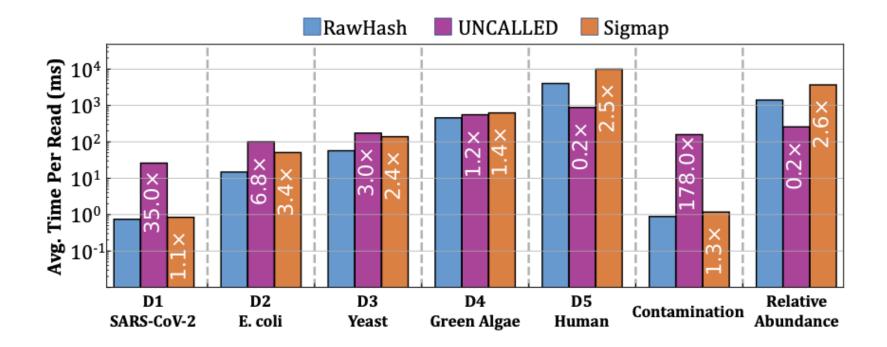
Backup Slides

Sequencing Time and Cost Reductions

Tool	SARS-CoV-2	E. coli	Yeast	Green Algae	Human
	Average se	equenced ba	se length pe	r read	
UNCALLED	184.51	580.52	1,233.20	5,300.15	6,060.23
RawHash	513.95	1,376.14	2,565.09	4,760.59	4,773.58
	Average seque	enced numb	er of chunks	s per read	194
Sigmap	1.01	2.11	4.14	5.76	10.40
RawHash	1.24	3.20	5.83	10.72	10.70

Profiling the RawHash Steps

	Fraction of entire runtime (%)							
Tool	SARS-CoV-2	E. coli	Yeast	Green Algae	Human			
File I/O	0.00	0.00	0.00	0.00	0.00			
Signal-to-Event	21.75	1.86	1.01	0.53	0.02			
Sketching	0.74	0.06	0.04	0.03	0.00			
Seeding	3.86	4.14	3.52	6.70	5.39			
Chaining	73.50	93.92	95.42	92.43	94.46			
Seeding + Chaining	77.36	98.06	98.94	99.14	99.86			


Required Computation Resources in Indexing

Tool	Contamination	SARS-CoV-2	E. coli	Yeast	Green Algae	Human	Relative Abundance
			CPU Ti	me (sec)			
UNCALLED	8.72	9.00	11.08	18.62	285.88	4,148.10	4,382.38
Sigmap	0.02	0.04	8.66	24.57	449.29	36,765.24	40,926.76
RawHash	0.18	0.13	2.62	4.48	34.18	1,184.42	788.88
			Real tir	ne (sec)			
UNCALLED	1.01	1.04	2.67	7.79	280.27	4,190.00	4,471.82
Sigmap	0.13	0.25	9.31	25.86	458.46	37,136.61	41,340.16
RawHash	0.14	0.10	1.70	2.06	15.82	278.69	154.68
			Peak mer	nory (GE	3)		
UNCALLED	0.07	0.07	0.13	0.31	11.96	48.44	47.81
Sigmap	0.01	0.01	0.40	1.04	8.63	227.77	238.32
RawHash	0.01	0.01	0.35	0.76	5.33	83.09	152.80

Required Computation Resources in Mapping

Tool	Contamination	SARS-CoV-2	E. coli	Yeast	Green Algae	Human	Relative Abundance
			CPU '	Time (sec)			
UNCALLED	265,902.26	36,667.26	35,821.14	8,933.52	16,769.09	262,597.83	586,561.54
Sigmap	4,573.18	1,997.84	23,894.70	11,168.96	31,544.55	4,837,058.90	11,027,652.91
RawHash	3,721.62	1,832.56	8,212.17	4,906.70	25,215.23	2,022,521.48	4,738,961.77
			Real	time (sec)			
UNCALLED	20,628.57	2,794.76	1,544.68	285.42	2,138.91	8,794.30	19,409.71
Sigmap	6,725.26	3,222.32	2,067.02	1,167.08	2,398.83	158,904.69	361,443.88
RawHash	3,917.49	1,949.53	957.13	215.68	1,804.96	65,411.43	152,280.26
			Peak m	emory (GB)			
UNCALLED	0.65	0.19	0.52	0.37	0.81	9.46	9.10
Sigmap	111.69	28.26	111.11	14.65	29.18	311.89	489.89
RawHash	4.13	4.20	4.16	4.37	11.75	52.21	55.31

Average Mapping Time per Read

