P&S Genomics

Lecture 7: GRIM-Filter

Jeremie S. Kim

ETH Zürich
Spring 2023
24 April 2023

GRIM-Filter:

Fast seed location filtering in DNA read mapping using processing-in-memory technologies

Jeremie S. Kim,

Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu

ECONOMICS AND TECHNOLOGY

Executive Summary

- Genome Read Mapping is a very important problem and is the first step in genome analysis
- Read Mapping is an approximate string matching problem
 - □ Find the best fit of 100 character strings into a 3 billion character dictionary
 - Alignment is currently the best method for determining the similarity between two strings, but is very expensive
- We propose an algorithm called GRIM-Filter
 - Accelerates read mapping by reducing the number of required alignments
 - GRIM-Filter can be accelerated using processing-in-memory
 - Adds simple logic into 3D-Stacked memory
 - Uses high internal memory bandwidth to perform parallel filtering
- GRIM-Filter with processing-in-memory delivers a 3.7x speedup

1. Motivation and Goal

- 2. Background Read Mappers
 - a. Hash Table Based
 - **b.** Hash Table Based with Filter
- 3. Our Proposal: GRIM-Filter
- **4.** Mapping GRIM-Filter to 3D-Stacked Memory
- **5.** Results
- **6.** Conclusion

Motivation and Goal

- Sequencing: determine the [A,C,G,T] series in DNA strand
- Today's machines sequence short strands (reads)
 - □ Reads are on the order of 100 20k base pairs (bp)
 - □ The human genome is approximately 3 billion bp
- Therefore genomes are cut into reads, which are sequenced independently, and then reconstructed
 - Read mapping is the first step in analyzing someone's genome to detect predispositions to diseases, personalize medicine, etc.
- Goal: We want to accelerate end-to-end performance of read mapping

1. Motivation and Goal

2. Background: Read Mappers

- a. Hash Table Based
- **b.** Hash Table Based with Filter
- 3. Our Proposal: GRIM-Filter
- **4.** Mapping GRIM-Filter to 3D-Stacked Memory
- **5.** Results
- **6.** Conclusion

Background: Read Mappers

We now have sequenced reads and want a full genome

We map **reads** to a known **reference genome** (>99.9% similarity across humans) with some minor errors allowed

Because of high similarity, long sequences in **reads** perfectly match in the **reference genome**

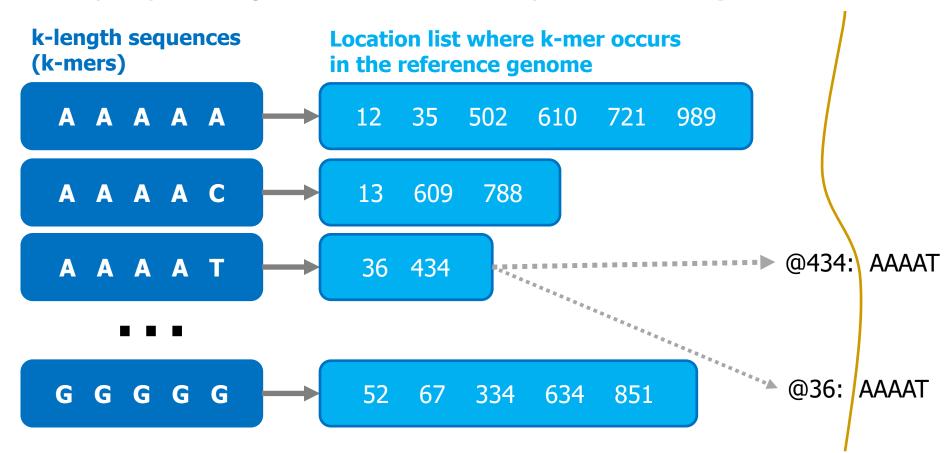
... G A C T G T G T C G A ...

We can use a hash table to help quickly map the reads!

- 1. Motivation and Goal
- 2. Background: Read Mappers
 - a. Hash Table Based
 - **b.** Hash Table Based with Filter
- 3. Our Proposal: GRIM-Filter
- **4.** Mapping GRIM-Filter to 3D-Stacked Memory
- **5.** Results
- **6.** Conclusion

Generating Hash Tables

To map any reads, generate a **hash table** per **reference genome.**



We can query the table with substrings from reads to quickly find a list of possible mapping locations

Hash Tables in Read Mapping

Read Sequence (100 bp)

99.9% of locations result in a mismatch

Hash Table

Reference Genome

We want to filter these out so we do not waste time trying to align them

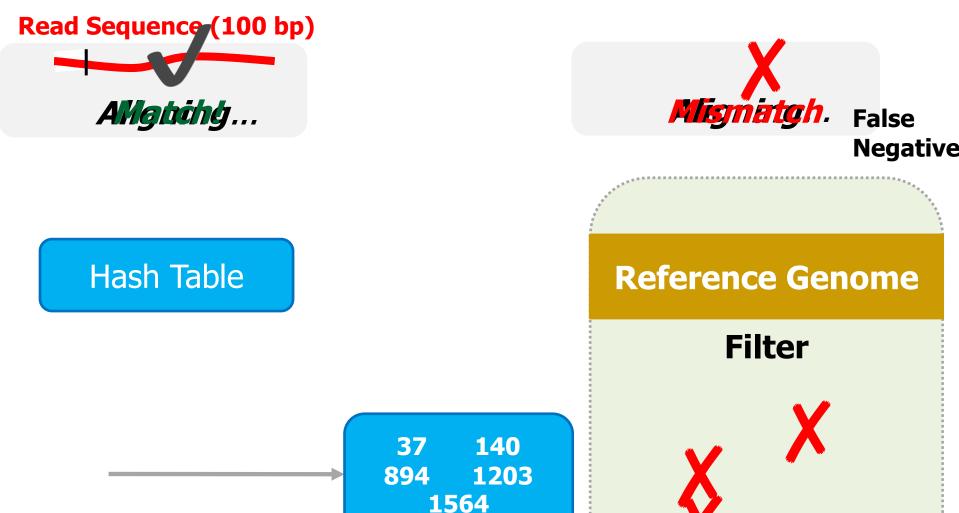
Location Filtering

- Alignment is expensive and requires the use of O(n²) dynamic programming algorithm
 - We need to align millions to billions of reads
- Our goal is to accelerate read mapping by improving the filtering step

Both methods are used by mappers today, but filtering has replaced alignment as the bottleneck [Xin+, BMC Genomics 2013]

- 1. Motivation and Goal
- 2. Background: Read Mappers
 - a. Hash Table Based
 - b. Hash Table Based with Filter
- 3. Our Proposal: GRIM-Filter
- **4.** Mapping GRIM-Filter to 3D-Stacked Memory
- **5.** Results
- **6.** Conclusion

Hash Tables in Read Mapping



- 1. Motivation and Goal
- 2. Background: Read Mappers
 - a. Hash Table Based
 - **b.** Hash Table Based with Filter
- 3. Our Proposal: GRIM-Filter
- **4.** Mapping GRIM-Filter to 3D-Stacked Memory
- **5.** Results
- **6.** Conclusion

Our Proposal: GRIM-Filter

- 1. Data Structures: Bins & Bitvectors
- Checking a Bin
- 3. Integrating GRIM-Filter into a Mapper

GRIM-Filter: Bins

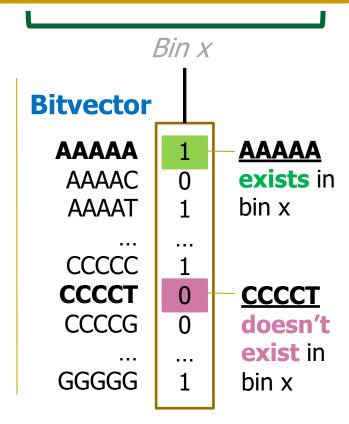
We partition the genome into large sequences (bins).

Bin x - 3

Bin x - 1

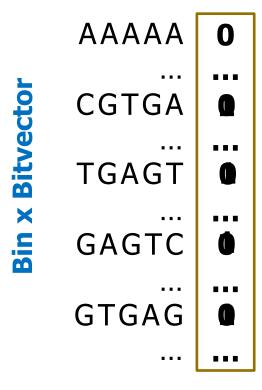
Bin x - 2

- Represent each bin with a bitvector that holds the occurrence of all permutations of a small string (token) in the bin
- To account for matches that straddle bins, we employ overlapping bins
 - A read will now always completely fall within a single bin

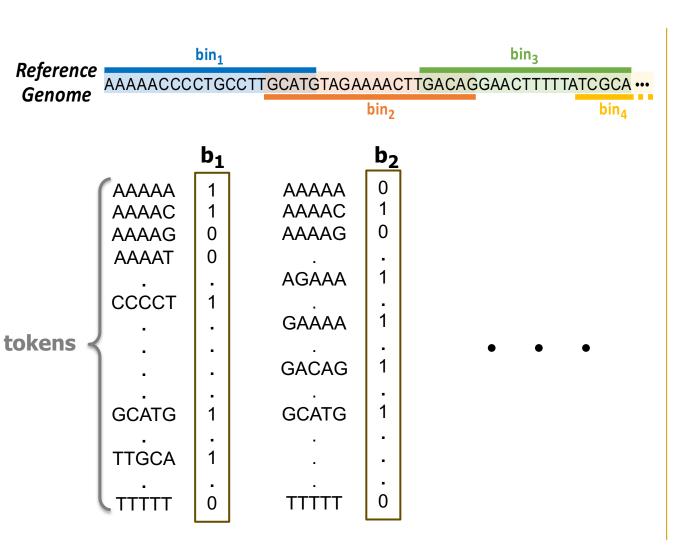


GRIM-Filter: Bitvectors

Bin x



GRIM-Filter: Bitvectors



Storing all bitvectors requires $4^n * t$ bits in memory, where t = number of bins.

For **bin size** ~200, and **n** = 5, **memory footprint** ~3.8 GB

Our Proposal: GRIM-Filter

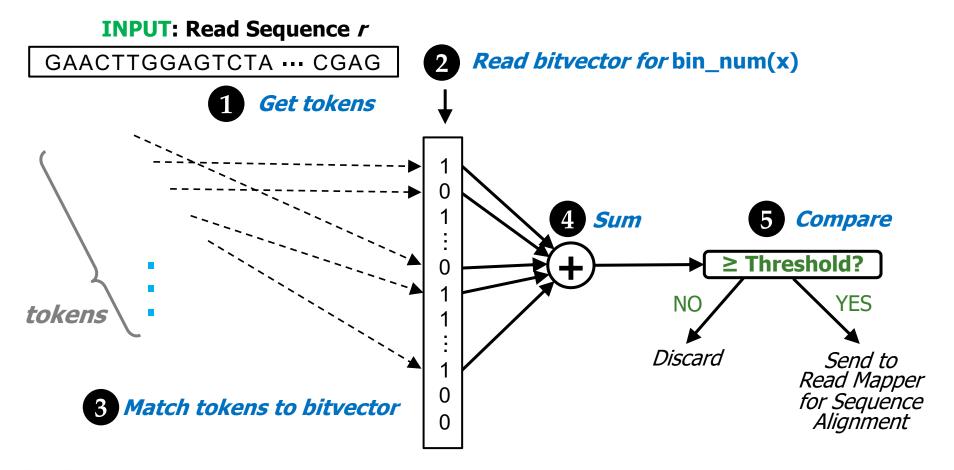
1. Data Structures: Bins & Bitvectors

2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

GRIM-Filter: Checking a Bin

How GRIM-Filter determines whether to **discard** potential match locations in a given bin **prior** to alignment



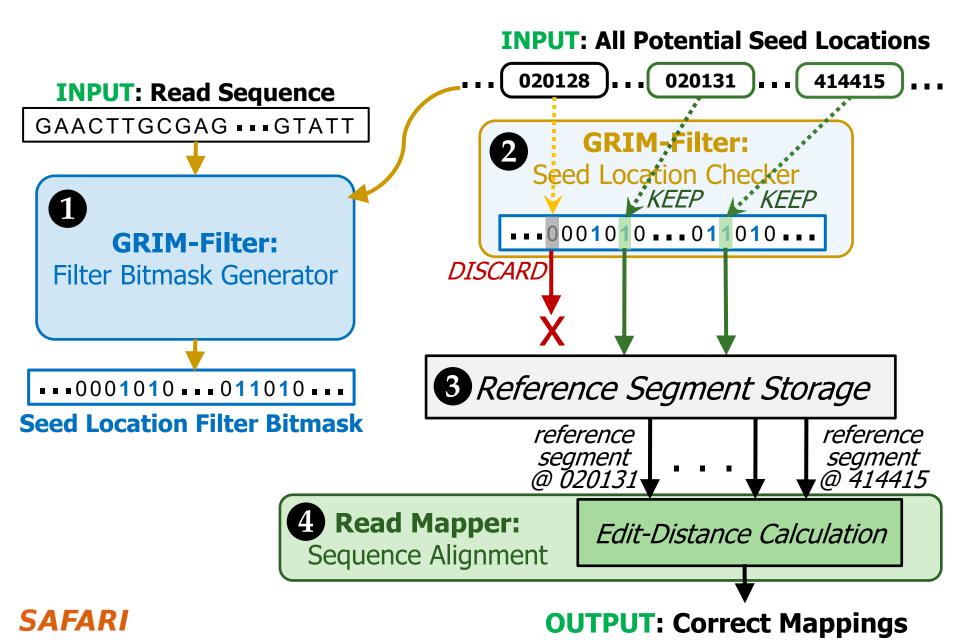
Our Proposal: GRIM-Filter

- 1. Data Structures: Bins & Bitvectors
- 2. Checking a Bin
- 3. Integrating GRIM-Filter into a Mapper

Our Proposal: GRIM-Filter

- 1. Data Structures: Bins & Bitvectors
- Checking a Bin
- 3. Integrating GRIM-Filter into a Mapper

Integrating GRIM-Filter into a Read Mapper



- 1. Motivation and Goal
- 2. Background: Read Mappers
 - a. Hash Table Based
 - **b.** Hash Table Based with Filter
- 3. Our Proposal: GRIM-Filter
- 4. Mapping GRIM-Filter to 3D-Stacked Memory
- **5.** Results
- **6.** Conclusion

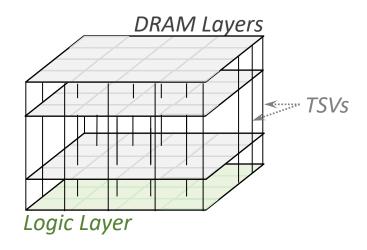
Key Properties of GRIM-Filter

1. Simple Operations:

- To check a given bin, find the sum of all bits corresponding to each token in the read
- Compare against threshold to determine whether to align
- 2. Highly Parallel: Each bin is operated on independently and there are many many bins
- 3. Memory Bound: Given the frequent accesses to the large bitvectors, we find that GRIM-Filter is memory bound

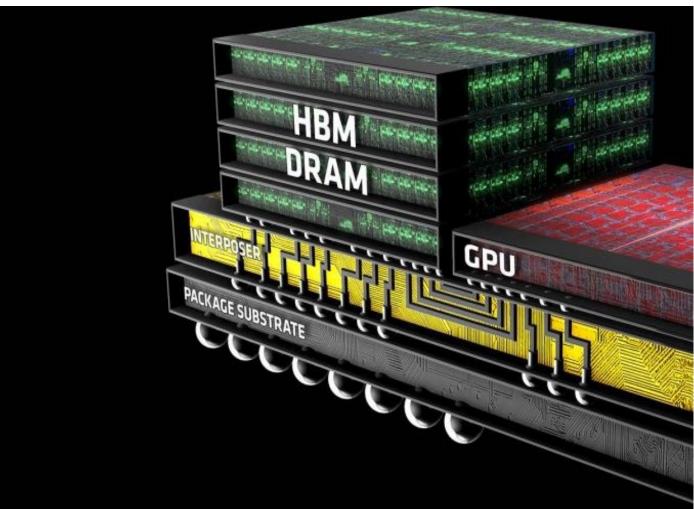
These properties together make GRIM-Filter a good algorithm to be run in 3D-Stacked DRAM

3D-Stacked Memory



- 3D-Stacked DRAM architecture has extremely high bandwidth as well as a stacked customizable logic layer
 - Logic Layer enables Processing-in-Memory, offloading computation to this layer and alleviating the memory bus
 - Embed GRIM-Filter operations into DRAM logic layer and appropriately distribute bitvectors throughout memory

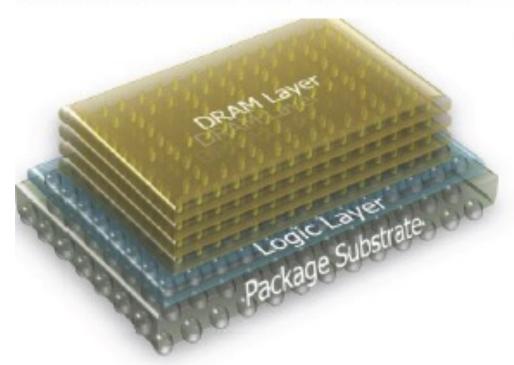
3D-Stacked Memory



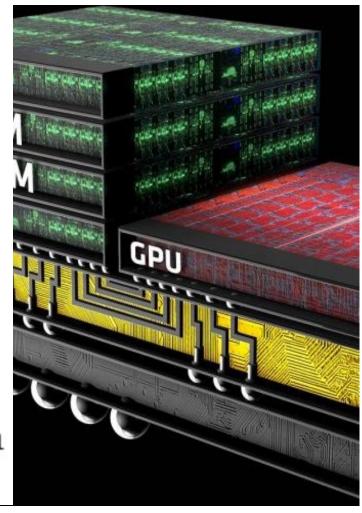
- 3D-Stacked DF bandwidth as
 - Logic Layer e computation t
 - Embed GRIMappropriately

3D-Stacked Memory

Micron's HMC

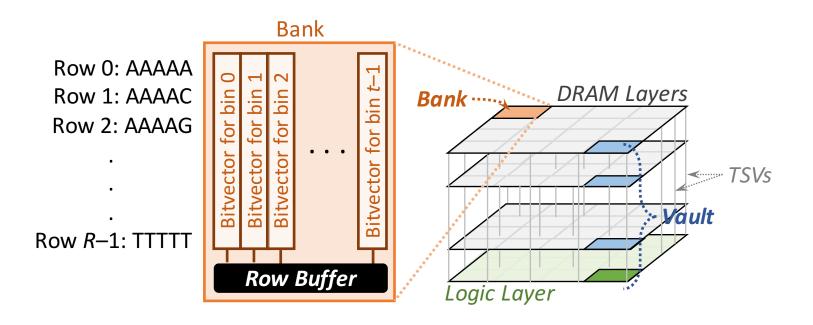


Micron has working demonstration components



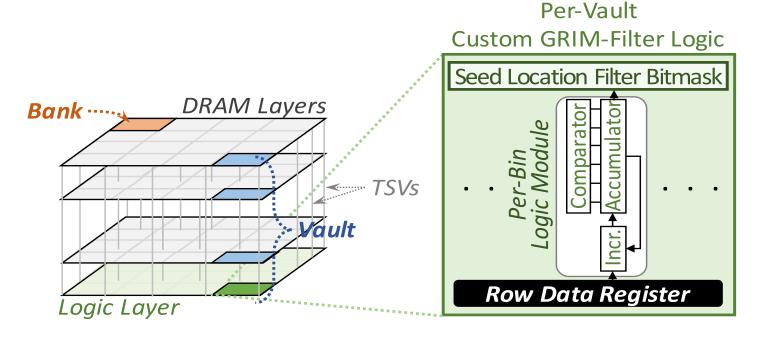
http://images.anandtech.com/doci/9266/HBMCar_678x452.jpg

GRIM-Filter in 3D-Stacked DRAM



- Each DRAM layer is organized as an array of banks
 - □ A bank is an array of cells with a row buffer to transfer data
- The layout of bitvectors in a bank enables filtering many bins in parallel

GRIM-Filter in 3D-Stacked DRAM



- Customized logic for accumulation and comparison per genome segment
 - Low area overhead, simple implementation
 - For HBM2, we use 4096 incrementer LUTs, 7-bit counters, and comparators in logic layer

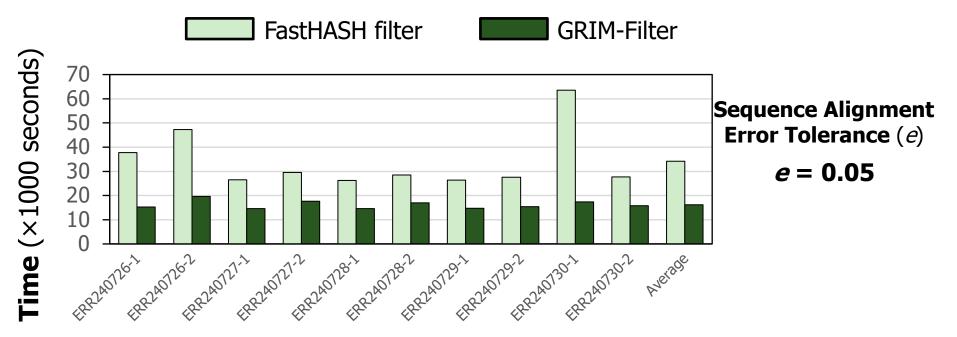
Details are in the paper

- 1. Motivation and Goal
- 2. Background: Read Mappers
 - a. Hash Table Based
 - **b.** Hash Table Based with Filter
- 3. Our Proposal: GRIM-Filter
- **4.** Mapping GRIM-Filter to 3D-Stacked Memory
- 5. Results
- **6.** Conclusion

Methodology

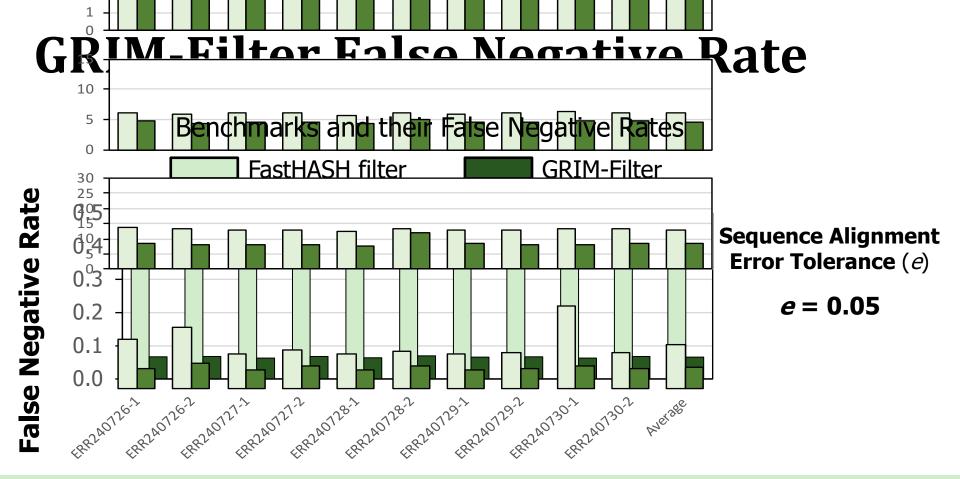
- Performance simulated using an in-house 3D-Stacked DRAM simulator
- Evaluate 10 real read data sets (From the 1000 Genomes Project)
 - Each data set consists of 4 million reads of length 100
- Evaluate two key metrics
 - Performance
 - □ False negative rate
 - The fraction of locations that pass the filter but result in a mismatch
- Compare against a state-of-the-art filter, FastHASH [xin+, BMC Genomics 2013] when using mrFAST, but GRIM-Filter can be used with ANY read mapper

GRIM-Filter Performance



1.8x-3.7x performance benefit across real data sets
2.1x average performance benefit

GRIM-Filter gets performance due to its hardware-software co-design



5.6x-6.4x False Negative reduction across real data sets 6.0x average reduction in False Negative Rate

GRIM-Filter utilizes more information available in the read to filter

Other Results in the Paper

- Sensitivity of execution time and false negative rates to error tolerance of string matching
- Read mapper execution time breakdown
- Sensitivity studies on the filter
 - Token Size
 - Bin Size
 - Error Tolerance

- **1.** Motivation and Goal
- 2. Background: Read Mappers
 - a. Hash Table Based
 - **b.** Hash Table Based with Filter
- 3. Our Proposal: GRIM-Filter
- **4.** Mapping GRIM-Filter to 3D-Stacked Memory
- **5.** Results
- 6. Conclusion

Conclusion

We propose an in-memory filtering algorithm to accelerate end-to-end read mapping by reducing the number of required alignments

Key ideas:

- Introduce a new representation of coarse-grained segments of the reference genome
- Use massively-parallel in-memory operations to identify read presence within each coarse-grained segment

Key contributions and results:

- Customized filtering algorithm for 3D-Stacked DRAM
- Compared to the previous best filter
 - □ We observed 1.8x-3.7x read mapping speedup
 - We observed 5.6x-6.4x fewer false negatives

GRIM-Filter is a universal filter that can be applied to any read mapper

GRIM-Filter:

Fast seed location filtering in DNA read mapping using processing-in-memory technologies

Jeremie S. Kim,

Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu

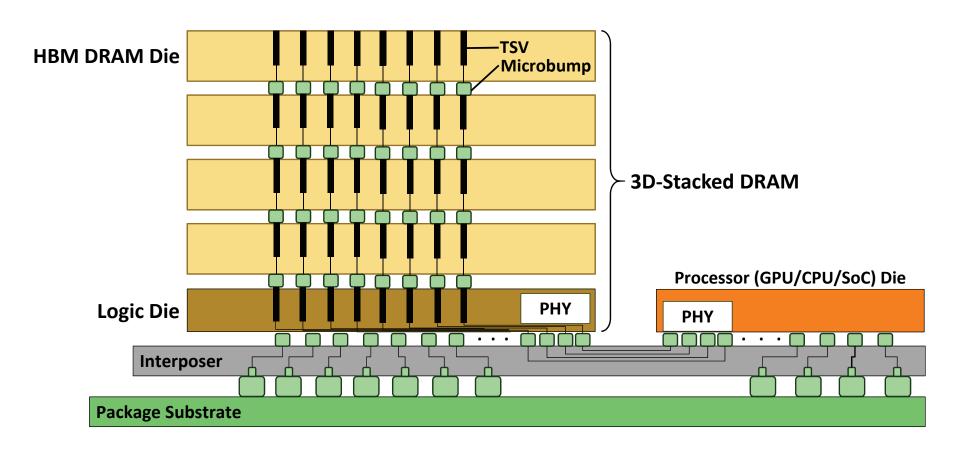
ECONOMICS AND TECHNOLOGY

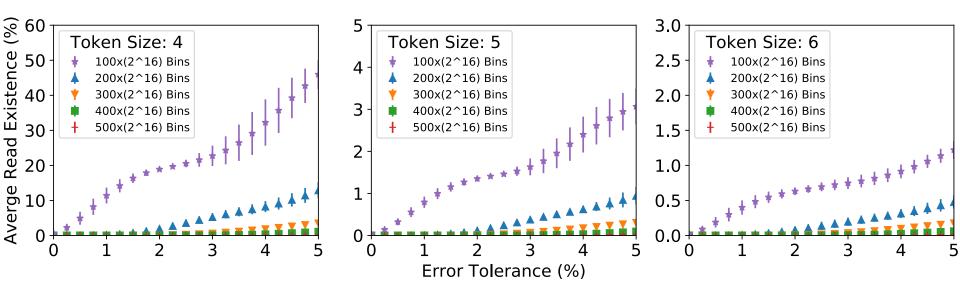
P&S Genomics

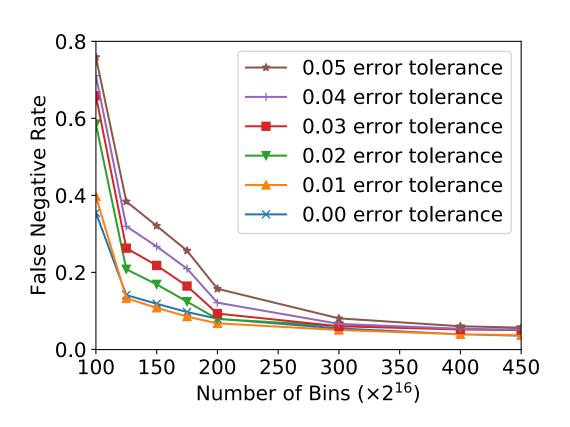
Lecture 7: GRIM-Filter

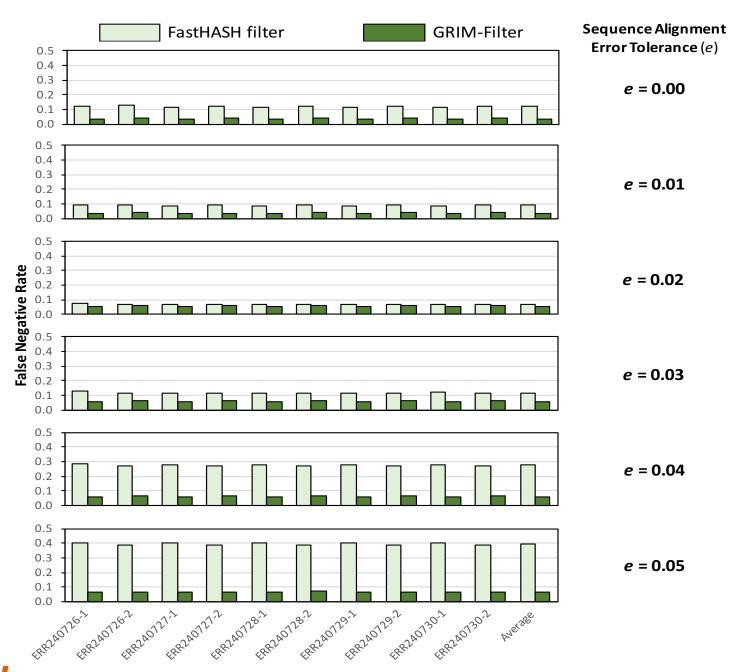
Jeremie S. Kim

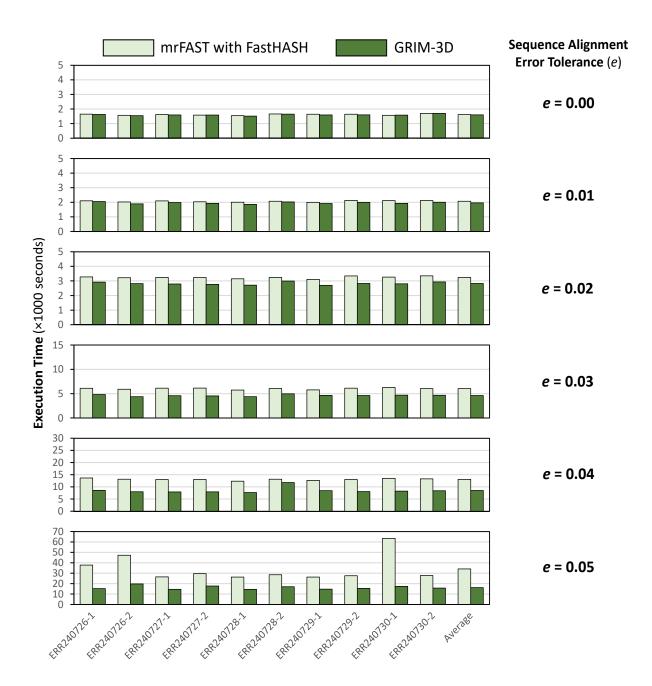
ETH Zürich
Spring 2023
24 April 2023



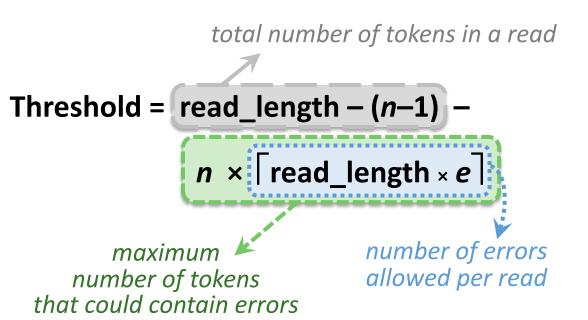




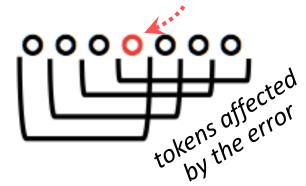




GRIM-Filter: Error Tolerance



single substitution error



one substitution error affects four tokens when n = 4

GRIM-Filter can support different error tolerances by simply changing the threshold value

More details in the paper