P&S Genomics Lecture 8a: GenASM

Joël Lindegger

ETH Zürich Spring 2023 27 April 2023

Genome Sequencing

- Genome sequencing: Enables us to determine the order of the DNA sequence in an organism's genome
 - Plays a pivotal role in:
 - Personalized medicine
 - Outbreak tracing
 - Understanding of evolution

- Modern genome sequencing machines extract smaller randomized fragments of the original DNA sequence, known as reads
 - Short reads: a few hundred base pairs, error rate of ~0.1%
 - Long reads: thousands to millions of base pairs, error rate of 10–15%

Genome Sequence Analysis

Read mapping: *First key step* in genome sequence analysis (GSA)

- Aligns reads to one or more possible locations within the reference genome, and
- Finds the matches and differences between the read and the reference genome segment at that location

Multiple steps of read mapping require *approximate string matching*

 Approximate string matching (ASM) enables read mapping to account for sequencing errors and genetic variations in the reads

Bottlenecked by the computational power and memory bandwidth limitations of existing systems

GenASM: ASM Framework for GSA

Our Goal:

Accelerate approximate string matching by designing a fast and flexible framework, which can accelerate *multiple steps* of genome sequence analysis

GenASM: First ASM acceleration framework for GSA

- Based upon the *Bitap* algorithm
 - Uses fast and simple bitwise operations to perform ASM
- Modified and extended ASM algorithm
 - Highly-parallel Bitap with long read support
 - Novel bitvector-based algorithm to perform *traceback*

• Co-design of our modified scalable and memory-efficient algorithms with low-power and area-efficient hardware accelerators 4

Use Cases & Key Results

(1) Read Alignment

- 116× speedup, 37× less power than Minimap2 (state-of-the-art SW)
- □ 111× speedup, 33× less power than BWA-MEM (state-of-the-art SW)
- 3.9× better throughput, 2.7× less power than Darwin (state-of-the-art HW)
- 1.9× better throughput, 82% less logic power than GenAx (state-of-the-art HW)

(2) Pre-Alignment Filtering

3.7× speedup, **1.7**× less power than Shouji (state-of-the-art HW)

(3) Edit Distance Calculation

- 22–12501× speedup, 548–582× less power than Edlib (state-of-the-art SW)
- **9.3–400×** speedup, 67× less power than ASAP (state-of-the-art HW)

300 M

bases/min

Read Mapping

Read alignment is often the bottleneck in read mapping

- Compare a pair of strings
- while allowing substitutions, insertions, and deletions

- Compare a pair of strings
- while allowing substitutions, insertions, and deletions

- Compare a pair of strings
- while allowing substitutions, insertions, and deletions

- Compare a pair of strings
- while allowing substitutions, insertions, and deletions

- Compare a pair of strings
- while allowing substitutions, insertions, and deletions

- Compare a pair of strings
- while allowing substitutions, insertions, and deletions

- Compare a pair of strings
- while allowing substitutions, insertions, and deletions
- The total number of edits should be minimal

Arithmetic Dynamic Programming for PSA

Needleman-Wunsch Smith-Waterman-Gotoh, WFA, ... **Next entry is calculated from three neighbors** using arithmetic operations

The Bitap Algorithm

Text	Α	С	G	т	-
Exact Match	1111	1111	1111	1111	1111
1 Edit	0110	1010	1100	1110	1110
2 Edits	0000	0000	1000	1100	1100
3 Edits	0000	0000	0000	1000	1000
4 Edits	0000	0000	0000	0000	0000

Bitap

Next entry is calculated from three neighbors using bitwise operations

> Particularly efficient in hardware

Needleman-Wunsch Smith-Waterman-Gotoh, WFA, ... Next entry is calculated from three neighbors using arithmetic operations

Bitap Algorithm (cont'd.)

For each character of the text (char): Copy previous R bitvectors as oldR	Large number of iterations
R[0] = (oldR[0] << 1) PM [char]	
For d = 1k:	
deletion = oldR[d-1]	
substitution = oldR[d-1] << 1	
insertion = R[d-1] << 1	
match = (oldR[d] << 1) PM [char]	
R[d] = deletion & mismatch & insertion	& match
Check MSB of R[d]:	
If 1, no match.	
If 0, match with <i>d</i> many errors.	

Bitap Algorithm (cont'd.)

For each character of the text (char): Copy previous R bitvectors as oldR R[0] = (oldR[0] << 1) | PM [char] For d = 1...k: Data dependency = oldR[d-1] deletion between iterations substitution = oldR[d-1] << 1</pre> (i.e., no insertion = R[d-1] << 1parallelization) = (oldR[d] << 1) PM [char] match R[d] = deletion & mismatch & insertion & match Check MSB of R[d]: If 1, no match. If 0, match with *d* many errors.

Bitap Algorithm (cont'd.)

For each character of the text (char):

insertion

```
Copy previous R bitvectors as oldR
```

```
R[0] = (old R[0] << 1) | PM [char]
```

For d = 1...k:

deletion	= oldR[d-1]		
substitution	= oldR[d-1] << 1		

Does *not* store and process these intermediate bitvectors to find the optimal alignment (i.e., no traceback)

```
match = (oldR[d] << 1) | PM [char]
```

= R|d-1| << 1

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match.

If 0, match with *d* many errors.

Limitations of Bitap

- 1) Data Dependency Between Iterations:
 - Two-level data dependency forces the consecutive iterations to take place sequentially
- 2) No Support for Traceback:
 - Bitap does not include any support for optimal alignment identification
- 3) No Support for Long Reads:
 - Each bitvector has a length equal to the length of the pattern
 - Bitwise operations are performed on these bitvectors

4) Limited Compute Parallelism:

- Text-level parallelism
- Limited by the number of compute units in existing systems
- 5) Limited Memory Bandwidth:
 - High memory bandwidth required to read and write the computed bitvectors to memory

Hardware

Algorithm

GenASM: ASM Framework for GSA

- Approximate string matching (ASM) acceleration framework based on the Bitap algorithm
- **First ASM acceleration framework for genome sequence analysis**
- We overcome the five limitations that hinder Bitap's use in genome sequence analysis:
 - Modified and extended ASM algorithm
 - Highly-parallel Bitap with long read support
 - Novel bitvector-based algorithm to perform *traceback*
 - Specialized, low-power and area-efficient hardware for both modified Bitap and novel traceback algorithms

The GenASM-DC Algorithm

Text	Α	С	G	Т	-
Exact Match	1111	1111	1111	1111	1111
1 Edit	0110	1010	1100	1110	1110
2 Edits	0000	0000	1000	1100	1100
3 Edits	0000	0000	0000	1000	1000
4 Edits	0000	0000	0000	0000	0000

GenASM-DC stores all computed bitvectors for later "traceback"

The GenASM-TB Algorithm

Traceback obtains the CIGAR string by backtracking the origin of the topmost 0 in the leftmost column.

GenASM Hardware Design

GenASM-DC:

generates bitvectors and performs edit Distance Calculation GenASM-TB: performs TraceBack and assembles the optimal alignment

GenASM Hardware Design

GenASM-DC:

generates bitvectors and performs edit Distance Calculation GenASM-TB: performs TraceBack and assembles the optimal alignment

GenASM Hardware Design

SAFAR

Our specialized compute units and on-chip SRAMs help us to:

Atch the rate of computation with memory capacity and bandwidth

 \rightarrow Achieve high performance and power efficiency

 \rightarrow Scale linearly in performance with

the number of parallel compute units that we add to the system

GenASM-DC: Hardware Design

Linear cyclic systolic array based accelerator

 Designed to maximize parallelism and minimize memory bandwidth and memory footprint

GenASM-TB: Hardware Design

□ Very simple logic:

1 Reads the bitvectors from one of the TB-SRAMs using the computed address

2 Performs the required bitwise comparisons to find the traceback output for the current position

3 Computes the next TB-SRAM address to read the new set of bitvectors **FAR**

Evaluation Methodology

We evaluate GenASM using:

- Synthesized SystemVerilog models of the GenASM-DC and GenASM-TB accelerator datapaths
- Detailed simulation-based performance modeling
- □ 16GB HMC-like 3D-stacked DRAM architecture
 - o 32 vaults
 - 256GB/s of internal bandwidth, clock frequency of 1.25GHz
 - In order to achieve high parallelism and low power-consumption
 - Within each vault, the logic layer contains a GenASM-DC accelerator, its associated DC-SRAM, a GenASM-TB accelerator, and TB-SRAMs.

Evaluation Methodology (cont'd.)

	SW Baselines	HW Baselines
Read Alignment	Minimap2 ¹ BWA-MEM ²	GACT (Darwin) ³ SillaX (GenAx) ⁴
Pre-Alignment Filtering	_	Shouji⁵
Edit Distance Calculation	Edlib ⁶	ASAP ⁷

[1] H. Li. "Minimap2: Pairwise Alignment for Nucleotide Sequences." In *Bioinformatics*, 2018.

[2] H. Li. "Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM." In arXiv, 2013.

[3] Y. Turakhia et al. "Darwin: A genomics co-processor provides up to 15,000 x acceleration on long read assembly." In ASPLOS, 2018.

[4] D. Fujiki et al. "GenAx: A genome sequencing accelerator." In ISCA, 2018.

[5] M. Alser. "Shouji: A fast and efficient pre-alignment filter for sequence alignment." In *Bioinformatics*, 2019.

[6] M. Šošić et al. "Edlib: A C/C++ library for fast, exact sequence alignment using edit distance." In Bioinformatics, 2017.

[7] S.S. Banerjee et al. "ASAP: Accelerated short-read alignment on programmable hardware." In TC, 2018.

Evaluation Methodology (cont'd.)

For Use Case 1: Read Alignment, we compare GenASM with:

- Minimap2 and BWA-MEM (state-of-the-art SW)
 - Running on Intel[®] Xeon[®] Gold 6126 CPU (12-core) operating
 @2.60GHz with 64GB DDR4 memory
 - Using two simulated datasets:
 - Long ONT and PacBio reads: 10Kbp reads, 10-15% error rate
 - Short Illumina reads: 100-250bp reads, 5% error rate
- GACT of Darwin and SillaX of GenAx (state-of-the-art HW)
 - Open-source RTL for GACT
 - Data reported by the original work for SillaX
 - GACT is best for long reads, SillaX is best for short reads

Evaluation Methodology (cont'd.)

For Use Case 2: Pre-Alignment Filtering, we compare GenASM with:

- Shouji (state-of-the-art HW FPGA-based filter)
 - Using two datasets provided as test cases:
 - 100bp reference-read pairs with an edit distance threshold of 5
 - 250bp reference-read pairs with an edit distance threshold of 15

For Use Case 3: Edit Distance Calculation, we compare GenASM with:

- Edlib (state-of-the-art SW)
 - Using two 100Kbp and 1Mbp sequences with similarity ranging between 60%-99%
- ASAP (state-of-the-art HW FPGA-based accelerator)
 - Using data reported by the original work

Key Results – Area and Power

 Based on our synthesis of GenASM-DC and GenASM-TB accelerator datapaths using the Synopsys Design Compiler with a 28nm LP process:
 Both GenASM-DC and GenASM-TB operate (a) 1GHz

Key Results – Area and Power

 Based on our synthesis of GenASM-DC and GenASM-TB accelerator datapaths using the Synopsys Design Compiler with a 28nm LP process:
 Both GenASM-DC and GenASM-TB operate (a) 1GHz

GenASM has low area and power overheads

Key Results – Use Case 1

(1) Read Alignment Step of Read Mapping

 Find the optimal alignment of how reads map to candidate
 reference regions

(2) Pre-Alignment Filtering for Short Reads
 Ouickly identify and filter out the unlikely candidate reference regions for each read

(3) Edit Distance Calculation

Measure the similarity or distance between two sequences

Key Results – Use Case 1 (Long Reads)

SW

GenASM achieves 648× and 116× speedup over 12-thread runs of BWA-MEM and Minimap2, while reducing power consumption by 34× and 37×

Key Results – Use Case 1 (Long Reads)

GenASM provides 3.9× better throughput, 6.6× the throughput per unit area, and 10.5× the throughput per unit power, compared to GACT of Darwin

HW

Key Results – Use Case 1 (Short Reads)

Additional Details in the Paper

- Details of the GenASM-DC and GenASM-TB algorithms
- **Big-O analysis** of the algorithms
- Detailed explanation of evaluated use cases
- Evaluation methodology details
 (datasets, baselines, performance model)
- □ Additional results for the three evaluated use cases
- Sources of improvements in GenASM
 (algorithm-level, hardware-level, technology-level)
- □ Discussion of **four other potential use cases** of GenASM

GenASM [MICRO 2020]

Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,

"GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis"

Proceedings of the <u>53rd International Symposium on Microarchitecture</u> (**MICRO**), Virtual, October 2020.

GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis

Damla Senol Cali[†][™] Gurpreet S. Kalsi[™] Zülal Bingöl[▽] Can Firtina[◊] Lavanya Subramanian[‡] Jeremie S. Kim^{◊†} Rachata Ausavarungnirun[⊙] Mohammed Alser[◊] Juan Gomez-Luna[◊] Amirali Boroumand[†] Anant Nori[™] Allison Scibisz[†] Sreenivas Subramoney[™] Can Alkan[▽] Saugata Ghose^{*†} Onur Mutlu^{◊†▽}
 [†]Carnegie Mellon University [™]Processor Architecture Research Lab, Intel Labs [¬]Bilkent University [◊]ETH Zürich
 [‡]Facebook [⊙]King Mongkut's University of Technology North Bangkok ^{*}University of Illinois at Urbana–Champaign

P&S Genomics Lecture 8a: GenASM

Joël Lindegger

ETH Zürich Spring 2023 27 April 2023

P&S Genomics Lecture 8b: Scrooge

Joël Lindegger

ETH Zürich Spring 2023 27 April 2023

A Fast and Memory-Frugal Genomic Sequence Aligner for CPUs, GPUs, and ASICs

Joël Lindegger

Damla Senol Cali, Mohammed Alser, Juan Gómez-Luna, Nika Mansouri Ghiasi, Onur Mutlu

> April 14th 2023 RECOMB-Seq

Our Goals

Build a practical and efficient implementation of the GenASM algorithm for multiple computing platforms

Compete with state-of-the-art pairwise sequence aligners like Edlib, KSW2, and BiWFA

Scrooge

Three novel algorithmic improvements which address inefficiencies in the GenASM algorithm

Efficient open-source implementations for CPUs and GPUs

Key Results

Scrooge consistently outperforms GenASM

- 2.1x speedup over GenASM on CPU
- 5.9x speedup over GenASM on GPU
- 3.6x better area efficiency than GenASM as an ASIC

Scrooge consistently outperforms state-of-the-art CPU and GPU baselines, including KSW2, Edlib, and BiWFA

Outline

1	Executive Summary	
2	Analysis of GenASM	
3	Scrooge Algorithm	
4	Scrooge Implementations	
5	Evaluation	
6	Conclusion	

Analysis of GenASM

[Senol Cali+], "<u>GenASM: A High-Performance, Low-Power Approximate String Matching</u> <u>Acceleration Framework for Genome Sequence Analysis</u>", MICRO 2020

Roofline Analysis of GenASM

 Does commodity hardware have enough memory bandwidth for the GenASM algorithm?

Roofline Analysis of GenASM Inefficiency #1 GenASM cannot saturate commodity hardware with

computation due to too much data movement

Memory Footprint Analysis of GenASM

 Does commodity hardware have enough on-chip memory for the GenASM algorithm?

Memory Footprint Analysis of GenASM

Memory Footprint Analysis of GenASM Inefficiency #2 GenASM has a large memory footprint,

especially when multiple instances are kept in

memory for simultaneous multithreading **To Utilize** Simultaneous Multithreading Third GenASM Instance To Utilize Second Second Simultaneous Multithreading GenASM Instance GenASM Instance (Hyperthreading in Intel speak) 96.5KiB 96.5KiB **99KiB** GenASM **Shared Memory** GenASM 32KiB **Memory Footprint** per SM Memory Footprint L1D per Core Intel Xeon Gold 5118 **NVIDIA RTX A6000**

Unnecessary Work in GenASM

Text	Α	С	G	т	-
Exact Match	1111	1111	1111	1111	1111
1 Edit	0+10-	×0+0-		-1+0	1110
2 Edits	0000	0000	1000	1100	1100
3 Edits	0000	0000	0000	1000	1000
4 Edits	0000	0000	0000	0000	0000
Cannot be Reached by Traceback					

Inefficiency #3

GenASM does unnecessary work by computing

DP cells which cannot be reached by Traceback

Inefficiencies in GenASM

1. Large memory bandwidth requirement

2. Large memory footprint

3. Unnecessary work

Outline

1	Executive Summary	
2	Analysis of GenASM	
3	Scrooge Algorithm	
4	Scrooge Implementations	
5	Evaluation	
6	Conclusion	

Scrooge Algorithm

Memory Improvements reduce the memory footprint and data movement

Efficiency Improvement eliminates the unnecessary work

Scrooge Algorithm

Memory Improvements reduce the memory footprint and data movement

Efficiency Improvement eliminates the unnecessary work

SENE: Store Entries, Not Edges

Text	Α	С	G	т	-
Exact Match	1111	1111	1111	1111	1111
1 Edit	0+10-	×0 0		-1+0	1110
2 Edits	0000	0000	1000	1100	1100
3 Edits	0000	0000	0000	1000	1000
4 Edits	0000	0000	0000	0000	0000

SENE: Store Entries, Not Edges

SENE: Store Entries, Not Edges

Text	Α	С	G	Т	-
Exact Match	1111	1111	1111	1111	1111
1 Edit	0 10				1110
2 Edits	0000	0000	1000	1100	1100

SENE results in a 3x reduction in memory footprint and data movement

Scrooge Algorithm

Memory Improvements reduce the memory footprint and data movement

Efficiency Improvement eliminates the unnecessary work

DENT: <u>Discard Entries Not Used by Traceback</u>

DENT results in a 4x reduction in memory footprint and data movement

Scrooge Algorithm

Memory Improvements reduce the memory footprint and data movement

Efficiency Improvement eliminates the unnecessary work

ET: <u>Early</u> <u>Termination</u>

ET eliminates the **unnecessary work** on average, at **least 25%** of cells **are unnecessary**

Outline

1	Executive Summary	
2	Analysis of GenASM	
3	Scrooge Algorithm	
4	Scrooge Implementations	
4 5	Scrooge Implementations Evaluation	
4 5 6		

Scrooge CPU & GPU Implementations

- We provide efficient open-source implementations of the Scrooge algorithm for CPUs and GPUs
 - Easy-to-use library interface

CPU version

- C++
- OpenMP for multithreading

GPU version

- C++
- NVIDIA GPUs
 - CUDA 11.1
 - Compute capability 7.0+

Scrooge on GitHub

i = README.md

%3 forksReport repository

Releases

Ø

No releases published Create a new release

Packages

No packages published Publish your first package

Languages

Scrooge: A fast and memory-frugal genomic sequence aligner for CPUs, GPUs and ASICs

Scrooge is a fast pairwise genomic sequence aligner. It efficiently aligns short and long genomic sequence pairs on multiple computing platforms. It is based on the GenASM algorithm (Senol Cali+, 2020), and adds multiple algorithmic improvements that significantly improve the throughput and resource efficiency for CPUs, GPUs and ASICs. For long reads, the CPU version of Scrooge achieves a 20.1x, 1.7x, and 2.1x speedup over KSW2, Edlib, and a CPU implementation of GenASM, respectively. The GPU version of Scrooge achieves a 4.0x 80.4x, 6.8x, 12.6x and 5.9x speedup over the CPU version of Scrooge, KSW2, Edlib, Darwin-GPU, and a GPU implementation of GenASM, respectively. We estimate an ASIC implementation of Scrooge to use 3.6x less chip area and 2.1x less power than a GenASM ASIC while maintaining the same throughput.

This repository contains Scrooge's CPU and GPU implementations, and several evaluation scripts. We describe Scrooge in our paper on arXiv and in Bioinformatics.

Outline

1	Executive Summary	
2	Analysis of GenASM	
3	Scrooge Algorithm	
4	Scrooge Implementations	
5	Evaluation	
6	Conclusion	

Methodology

Datasets

- Long reads
 - Simulated with PBSIM2 from the human reference genome GRCh38.p13
 - Chained with minimap2 to obtain 138,929 candidate pairs
- Short reads
 - Illumina reads from SRR13278681
 - Chained with minimap2 to obtain 9,612,222 candidate pairs

CPU: dual-socket Intel Xeon Gold 5118

- 2× 12 physical cores, 2× 24 logical cores @ 3.2GHz
- 196GiB DDR4 RAM
- GPU: NVIDIA RTX A6000
- ASIC
 - 28nm logic synthesis from [Senol Cali+]
 - SRAM numbers from CACTI 7

Long Read Throughput

Long Read Throughput

by 2.1x on CPU and 5.9x on GPU

Short Read Throughput

Short Read Throughput

ASIC Results

Scrooge introduces no significant computation overheads over a GenASM ASIC

Scrooge's on-chip memory is much cheaper than GenASM's due to the memory footprint and bandwidth reductions

(uses 18x less chip area and 18x less power)

Scrooge uses 3.6x less chip area and 2.1x less power than a GenASM ASIC

More in the Paper: Evaluation

- Throughput sensitivity to each algorithmic improvement
- Thread scaling results
- Rigorous accuracy analysis
- Sensitivity analysis of throughput and accuracy
- ASIC breakdown

More in the Paper

Bioinformatics

Issues Advance articles Submit

Alerts About

Article Navigation

JOURNAL ARTICLE ACCEPTED MANUSCRIPT

Scrooge: A Fast and Memory-Frugal Genomic Sequence Aligner for CPUs, GPUs, and ASICs 👌

Joël Lindegger 🖾, Damla Senol Cali, Mohammed Alser, Juan Gómez-Luna, Nika Mansouri Ghiasi, Onur Mutlu 🖾

Bioinformatics, btad151, https://doi.org/10.1093/bioinformatics/btad151

Published: 24 March 2023 Article history -

Outline

6	Conclusion
5	Evaluation
4	Scrooge Implementations
3	Scrooge Algorithm
2	Analysis of GenASM
1	Executive Summary

Conclusion

Motivation	Pairwise sequence alignment (PSA) is computationally costly and common step in bioinformatics pipelines. GenASM is a promising candidate for efficient PSA. For example, its ASIC implementation is up to 10,000x faster than prior software aligners.
Goals	 Build a practical and efficient implementation of the GenASM algorithm for multiple computing platforms Compete with state-of-the-art pairwise sequence aligners like Edlib, KSW2, and BiWFA
Scrooge	•Three novel algorithmic improvements address GenASM's inefficiencies •Efficient open-source CPU and GPU implementations
Key Results	 Scrooge consistently outperforms GenASM 2.1x speedup over GenASM on CPU 5.9x speedup over GenASM on GPU 3.6x better area efficiency than GenASM on ASIC Scrooge consistently outperforms state-of-the-art CPU and GPU baselines, including KSW2, Edlib, and BiWFA

P&S Genomics Lecture 8b: Scrooge

Joël Lindegger

ETH Zürich Spring 2023 27 April 2023

Backup Slides

ASIC Breakdown

GenASM-DC Algorithm

```
Algorithm 1 GenASM-DC Algorithm
Inputs: text, pattern, k
Outputs: editDist
  1: n \leftarrow \text{LENGTH}(\text{text})
  2: m \leftarrow \text{LENGTH}(\text{pattern})
  3: PM \leftarrow BUILDPATTERNMASKS(pattern)
  4:
  5: R[n][d] \leftarrow 11...1 \ll d \qquad \triangleright Initialize for all 0 \le d \le k
  6:
  7: for i in (n - 1) : -1 : 0 do
            char \leftarrow text[i]
  8:
            curPM \leftarrow PM[char]
  9:
 10:
            \mathsf{R}[\mathtt{i}][0] \leftarrow (\mathsf{R}[\mathtt{i}+1][0] \ll 1) \mid \mathsf{curPM}
                                                                          \triangleright exact match
 11:
            for d in 1 : k do
 12:
                  \mathbf{I} \leftarrow \mathbf{R}[\mathbf{i}][\mathbf{d}-1] \ll 1
                                                                                \triangleright insertion
 13:
                  \mathsf{D} \leftarrow \mathsf{R}[\mathsf{i}+1][\mathsf{d}-1]
                                                                                  ⊳ deletion
 14:
                  S \leftarrow R[i+1][d-1] \ll 1
                                                                           ▷ substitution
15:
                  M \leftarrow (R[i+1][d] \ll 1) \mid curPM
                                                                                     \triangleright match
 16:
                  R[i][d] \leftarrow I \& D \& S \& M
 17:
18:
 19: \operatorname{editDist} \leftarrow \operatorname{argmin}_{d} \{ \operatorname{MSB}(\mathsf{R}[0][\mathsf{d}]) = 0 \}
```

Fulls Roofline Models

Bitvector Interpretation

Theorem 1 The entries (bitvectors) of R can be interpreted as follows:

$$j$$
-th bit of $R[i][d] = 0 \iff$
 $distance(text[i:n), pattern[j:m)) \le d$

CPU Thread Scaling

GPU Thread Scaling

CPU Optimization Sensitivity

Accuracy Comparison

Accuracy Sensitivity to Window Size W

Accuracy Sensitivity to Window Overlap O

Failure Mode for Too Small Window Size W

Failure Mode for Too Small Window Size W

Long Read Dataset (Ground Truth)

Long Read Dataset

Short Read Dataset

