
P&S Genomics

Lecture 8a: GenASM

Joël Lindegger

ETH Zürich

Spring 2023

27 April 2023



Genome Sequencing
❑ Genome sequencing: Enables us to determine the order of the DNA 

sequence in an organism’s genome

o Plays a pivotal role in:

▪ Personalized medicine

▪ Outbreak tracing

▪ Understanding of evolution

❑ Modern genome sequencing machines extract smaller randomized 

fragments of the original DNA sequence, known as reads

o Short reads: a few hundred base pairs, error rate of ∼0.1%

o Long reads: thousands to millions of base pairs, error rate of 10–15%

Genome DNA
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Genome Sequence Analysis
❑ Read mapping: First key step in genome sequence analysis (GSA)

o Aligns reads to one or more possible locations within          

the reference genome, and

o Finds the matches and differences between the read and 

the reference genome segment at that location 

❑ Multiple steps of read mapping require approximate string matching

o Approximate string matching (ASM) enables read mapping to 

account for sequencing errors and genetic variations in the reads

❑ Bottlenecked by the computational power and memory bandwidth 

limitations of existing systems
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GenASM: ASM Framework for GSA

❑ GenASM: First ASM acceleration framework for GSA

o Based upon the Bitap algorithm 

▪ Uses fast and simple bitwise operations to perform ASM

o Modified and extended ASM algorithm

▪ Highly-parallel Bitap with long read support

▪ Novel bitvector-based algorithm to perform traceback

o Co-design of our modified scalable and memory-efficient algorithms 

with low-power and area-efficient hardware accelerators

Our Goal:

Accelerate approximate string matching 

by designing a fast and flexible framework, 

which can accelerate multiple steps of genome sequence analysis
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Use Cases & Key Results

(1) Read Alignment

❑ 116× speedup, 37× less power than Minimap2 (state-of-the-art SW)

❑ 111× speedup, 33× less power than BWA-MEM (state-of-the-art SW)

❑ 3.9× better throughput, 2.7× less power than Darwin (state-of-the-art HW)

❑ 1.9× better throughput, 82% less logic power than GenAx (state-of-the-art HW)

(2) Pre-Alignment Filtering

❑ 3.7× speedup, 1.7× less power than Shouji (state-of-the-art HW)

(3) Edit Distance Calculation

❑ 22–12501× speedup, 548–582× less power than Edlib (state-of-the-art SW)

❑ 9.3–400× speedup, 67× less power than ASAP (state-of-the-art HW)
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Genome 
Analysis
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TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACGCCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

1 2Sequencing Read Mapping

3 4Variant Calling Scientific Discovery

Source: Prof. Onur Mutlu’s lecture slides
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Billions of Short Reads

1 2Sequencing Read Mapping

3 4Variant Calling Scientific Discovery

300 M
bases/min

Illumina HiSeq4000  

2 M
bases/min

on average

(0.6%)

Bottlenecked in Mapping!!

Source: Prof. Onur Mutlu’s lecture slides
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Read Mapping

Indexing

Seeding

Pre-Alignment Filtering

Read Alignment

Reference 
genome

Hash-table 
based index

Potential mapping 
locations

Optimal 
alignment

Remaining 
potential mapping 
locations

Reads

Reference
segment

Query read
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Accelerating long-read analysis on modern CPUs,
Kalikar et al., bioRxiv 2022

Read alignment is often the bottleneck
in read mapping



Pairwise Sequence Alignment (PSA)
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• Compare a pair of strings
• while allowing

S A F A R I
S A L AM I

and deletionssubstitutions, insertions, 
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Pairwise Sequence Alignment (PSA)
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• Compare a pair of strings
• while allowing substitutions, 
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Pairwise Sequence Alignment (PSA)
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• Compare a pair of strings
• while allowing substitutions, 

SA F AR I
SAH AR IF

-substitutions
SA F AR I
SA L AM I

insertions

insertions,

S A F A R I
S A A R I-

and deletions



1. Compare a pair of strings
2. while allowing
• The total number of edits should be minimal

Pairwise Sequence Alignment (PSA)
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• Compare a pair of strings
• while allowing substitutions, 

SA F AR I
SAH AR IF

-substitutions
SA F AR I
SA L AM I

insertions

insertions,

SA F AR I
SA AR I-

and deletions

deletions

2=1X1=1X1= 2=1I4=

2=1D3=

The CIGAR string
is the output of PSA



Arithmetic Dynamic Programming for PSA
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Needleman-Wunsch Smith-Waterman-Gotoh, WFA, …

Next entry is calculated from three neighbors
using arithmetic operations



The Bitap Algorithm
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Text A C G T -

Exact Match

1 Edit

2 Edits

3 Edits

4 Edits

1111 1111 1111 1111 1111

0110 1010 1100 1110 1110

0000 0000 1000 1100 1100

0000 0000 0000 1000 1000

0000 0000 0000 0000 0000

Bitap
Next entry is calculated from three neighbors
using bitwise operations

Particularly efficient
in hardware



Large number of 
iterations

Bitap Algorithm (cont’d.)

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion          = oldR[d-1]

substitution  = oldR[d-1] << 1

insertion         = R[d-1] << 1

match              = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match. 

If 0, match with d many errors.
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Data dependency 
between iterations 

(i.e., no 
parallelization)

Bitap Algorithm (cont’d.)

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion          = oldR[d-1]

substitution  = oldR[d-1] << 1

insertion         = R[d-1] << 1

match              = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match. 

If 0, match with d many errors.
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Bitap Algorithm (cont’d.)

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion          = oldR[d-1]

substitution  = oldR[d-1] << 1

insertion         = R[d-1] << 1

match              = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match. 

If 0, match with d many errors.

Does not store and process 
these intermediate bitvectors 
to find the optimal alignment 

(i.e., no traceback)
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Hardware

Algorithm

Limitations of Bitap

1) Data Dependency Between Iterations:

o Two-level data dependency forces the consecutive iterations to take 

place sequentially

2) No Support for Traceback:

o Bitap does not include any support for optimal alignment identification

3) No Support for Long Reads:

o Each bitvector has a length equal to the length of the pattern

o Bitwise operations are performed on these bitvectors

4) Limited Compute Parallelism:

o Text-level parallelism

o Limited by the number of compute units in existing systems

5) Limited Memory Bandwidth:

o High memory bandwidth required to read and write the computed 

bitvectors to memory
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GenASM: ASM Framework for GSA
❑ Approximate string matching (ASM) acceleration framework based 

on the Bitap algorithm

❑ First ASM acceleration framework for genome sequence analysis

❑ We overcome the five limitations that hinder Bitap’s use in genome 

sequence analysis:

o Modified and extended ASM algorithm

▪ Highly-parallel Bitap with long read support

▪ Novel bitvector-based algorithm to perform traceback

o Specialized, low-power and area-efficient hardware for both  

modified Bitap and novel traceback algorithms
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The GenASM-DC Algorithm
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Text A C G T -

Exact Match

1 Edit

2 Edits

3 Edits

4 Edits

1111 1111 1111 1111 1111

0110 1010 1100 1110 1110

0000 0000 1000 1100 1100

0000 0000 0000 1000 1000

0000 0000 0000 0000 0000

GenASM-DC stores all computed bitvectors
for later “traceback”



The GenASM-TB Algorithm
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Text A C G T -

Exact Match

1 Edit

2 Edits

3 Edits

4 Edits

1111 1111 1111 1111 1111

0110 1010 1100 1110 1110

0000 0000 1000 1100 1100

0000 0000 0000 1000 1000

0000 0000 0000 0000 0000

The row number is 
the edit distance

Traceback obtains the CIGAR string
by backtracking the origin

of the topmost 0 in the leftmost column.

Search leftmost column 
for the topmost 0



GenASM-DC GenASM-TB

GenASM Hardware Design

GenASM-DC:
generates bitvectors 

and performs edit 
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the 
optimal alignment 

Host 
CPU

TB-SRAM1

TB-SRAM2

TB-SRAMn

GenASM-TB
Accelerator

GenASM-DC
Accelerator

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Main 
Memory

DC-SRAMDC-SRAM

GenASM-DC GenASM-TB

TB-SRAM1

TB-SRAM2

TB-SRAMn

.

.

.
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GenASM Hardware Design

GenASM-DC GenASM-TB

Host 
CPU

TB-SRAM1

TB-SRAM2

TB-SRAMn

GenASM-TB
Accelerator

GenASM-DC
Accelerator

GenASM-TB
Accelerator
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Accelerator

Main 
Memory
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.

.

.

reference 
& query 
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Write 
bitvectors

reference 
text 

& query 
pattern

sub-text & 
sub-pattern

Read 
bitvectors

Generate 
bitvectors

2

1

3

4

5 6

GenASM-DC:
generates bitvectors 

and performs edit 
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the 
optimal alignment 

Read 
bitvectors

6
Write 

bitvectors

5

Generate 
bitvectors 4

sub-text & 
sub-pattern3

reference 
text 

& query 
pattern

2

reference 
& query 

locations

1

Find the 
traceback output

7
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GenASM Hardware Design

GenASM-DC GenASM-TB

Host 
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2

1
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7

GenASM-DC:
generates bitvectors 

and performs edit 
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the 
optimal alignment 

Our specialized compute units and on-chip SRAMs help us to: 

→ Match the rate of computation with memory capacity and bandwidth 

→ Achieve high performance and power efficiency

→ Scale linearly in performance with                                                                     

the number of parallel compute units that we add to the system
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GenASM-DC: Hardware Design
❑ Linear cyclic systolic array based accelerator

o Designed to maximize parallelism and minimize memory bandwidth and
memory footprint

Processing Block (PB)

Processing Core (PC)

OldR[d-1] <<

<<

<<

R[d-1]

OldR[d]

PatternMask Match

R[d]

Substitution

Insertion

Deletion

OldR
out

PM 
out

PM
out

OldR in

PM in

PC

PE1

PC

PE2

PC

PEp-1

PC

PEp

OldR
out

PC

PE

DC-SRAM

TB-SRAMp-1

Intermediate Bitvectors

TB-SRAMpTB-SRAM2TB-SRAM1
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Bitwise 
Comparisons

CIGAR string

Last CIGAR

<<

match

CIGAR
out

1

2
.
.

64

192
insertion

deletion

subs

64

64

64

64

1

2

Next Rd 
Addr

Compute

3

GenASM-TB

GenASM-TB: Hardware Design

❑ Very simple logic: 

❶Reads the bitvectors from one of the TB-SRAMs using the computed 
address 
❷Performs the required bitwise comparisons to find the traceback output 
for the current position
❸Computes the next TB-SRAM address to read the new set of bitvectors

Bitwise 
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CIGAR string

Last CIGAR

<<

match

CIGAR
out

1

2
.
.

64

192
insertion

deletion

subs

64

64

64

64

to main 
memory

1

2

Next Rd 
Addr

Compute
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1.5KB
TB-SRAM64

1

2
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Evaluation Methodology

❑We evaluate GenASM using:

o Synthesized SystemVerilog models of the GenASM-DC and 

GenASM-TB accelerator datapaths 

o Detailed simulation-based performance modeling

❑ 16GB HMC-like 3D-stacked DRAM architecture

o 32 vaults 

o 256GB/s of internal bandwidth, clock frequency of 1.25GHz

o In order to achieve high parallelism and low power-consumption

o Within each vault, the logic layer contains a GenASM-DC 

accelerator, its associated DC-SRAM, a GenASM-TB accelerator, 

and TB-SRAMs.
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Evaluation Methodology (cont’d.)

SW Baselines HW Baselines

Read Alignment
Minimap21

BWA-MEM2

GACT (Darwin)3

SillaX (GenAx)4

Pre-Alignment Filtering – Shouji5

Edit Distance Calculation Edlib6 ASAP7

[1] H. Li. "Minimap2: Pairwise Alignment for Nucleotide Sequences." In Bioinformatics, 2018.
[2] H. Li. "Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM." In arXiv, 2013.

[3] Y. Turakhia et al. "Darwin: A genomics co-processor provides up to 15,000 x acceleration on long read assembly." In ASPLOS, 2018.
[4] D. Fujiki et al. "GenAx: A genome sequencing accelerator." In ISCA, 2018.

[5] M. Alser. "Shouji: A fast and efficient pre-alignment filter for sequence alignment." In Bioinformatics, 2019.
[6] M. Šošić et al. "Edlib: A C/C++ library for fast, exact sequence alignment using edit distance." In Bioinformatics, 2017.

[7] S.S. Banerjee et al. ”ASAP: Accelerated short-read alignment on programmable hardware." In TC, 2018.
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Evaluation Methodology (cont’d.)

❑ For Use Case 1: Read Alignment, we compare GenASM with:

o Minimap2 and BWA-MEM (state-of-the-art SW)

▪ Running on Intel® Xeon® Gold 6126 CPU (12-core) operating 

@2.60GHz with 64GB DDR4 memory

▪ Using two simulated datasets:

◦ Long ONT and PacBio reads: 10Kbp reads, 10-15% error rate

◦ Short Illumina reads: 100-250bp reads, 5% error rate

o GACT of Darwin and SillaX of GenAx (state-of-the-art HW)

▪ Open-source RTL for GACT

▪ Data reported by the original work for SillaX

▪ GACT is best for long reads, SillaX is best for short reads
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Evaluation Methodology (cont’d.)
❑ For Use Case 2: Pre-Alignment Filtering, we compare GenASM with:

o Shouji (state-of-the-art HW – FPGA-based filter)

▪ Using two datasets provided as test cases:

• 100bp reference-read pairs with an edit distance threshold of 5

• 250bp reference-read pairs with an edit distance threshold of 15

❑ For Use Case 3: Edit Distance Calculation, we compare GenASM with:

o Edlib (state-of-the-art SW)

▪ Using two 100Kbp and 1Mbp sequences with similarity ranging 

between 60%-99%

o ASAP (state-of-the-art HW – FPGA-based accelerator)

▪ Using data reported by the original work
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Key Results – Area and Power
❑ Based on our synthesis of GenASM-DC and GenASM-TB accelerator 

datapaths using the Synopsys Design Compiler with a 28nm LP process:

o Both GenASM-DC and GenASM-TB operate @ 1GHz

Total (1 vault): 0.334 mm2 0.101 W

Total (32 vaults): 10.69 mm2 3.23 W

% of a Xeon CPU core: 1% 1%

0.049 0.016

0.013

0.256

Area (mm2)

0.033

0.004

0.009

0.055

Power (W)

0.033

0.004

0.009

0.055
Pow er (W)

GenASM-DC (64 PEs) GenASM-TB DC-SRAM (8 KB) TB-SRAMs (64 x 1.5 KB)

0.033

0.004

0.009

0.055

Power (W)

GenASM-DC (64 PEs)

GenASM-TB

DC-SRAM (8 KB)

TB-SRAMs (64 x 1.5 KB)
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Key Results – Area and Power
❑ Based on our synthesis of GenASM-DC and GenASM-TB accelerator 

datapaths using the Synopsys Design Compiler with a 28nm LP process:

o Both GenASM-DC and GenASM-TB operate @ 1GHz

0.049 0.016

0.013

0.256
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0.033

0.004

0.009

0.055

Power (W)

0.033

0.004

0.009

0.055
Pow er (W)

GenASM-DC (64 PEs) GenASM-TB DC-SRAM (8 KB) TB-SRAMs (64 x 1.5 KB)

0.033

0.004

0.009

0.055

Power (W)

GenASM-DC (64 PEs)

GenASM-TB

DC-SRAM (8 KB)

TB-SRAMs (64 x 1.5 KB)

GenASM has low area and power overheads
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Key Results – Use Case 1

(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate 

reference regions

(2) Pre-Alignment Filtering for Short Reads

oQuickly identify and filter out the unlikely candidate 

reference regions for each read

(3) Edit Distance Calculation

oMeasure the similarity or distance between two sequences
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Key Results – Use Case 1 (Long Reads)

1E+00

1E+01
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T
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u

g
h

p
u

t 
(r
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d
s/
se
c)

BWA-MEM (12-thread) GenASM (w/ BWA-MEM)

Minimap2 (12-thread) GenASM (w/ Minimap2)

GenASM achieves 648× and 116× speedup over 

12-thread runs of BWA-MEM and Minimap2, 

while reducing power consumption by 34× and 37×

648×

116×

SW
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Key Results – Use Case 1 (Long Reads)

1.E+00
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GACT (Darwin) GenASM

GenASM provides 3.9× better throughput, 

6.6× the throughput per unit area, and 

10.5× the throughput per unit power, 

compared to GACT of Darwin

3.9×

HW
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Key Results – Use Case 1 (Short Reads)

GenASM achieves 111× and 158× speedup over 

12-thread runs of BWA-MEM and Minimap2, 

while reducing power consumption by 33× and 31×

111×
158×

GenASM provides 1.9× better throughput and 

uses 63% less logic area and 82% less logic power, 

compared to SillaX of GenAx

HW

SW
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Additional Details in the Paper

❑ Details of the GenASM-DC and GenASM-TB algorithms

❑ Big-O analysis of the algorithms

❑ Detailed explanation of evaluated use cases

❑ Evaluation methodology details                                             

(datasets, baselines, performance model)

❑ Additional results for the three evaluated use cases

❑ Sources of improvements in GenASM                             

(algorithm-level, hardware-level, technology-level)

❑ Discussion of four other potential use cases of GenASM 
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GenASM [MICRO 2020]
Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, 

Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, 

Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, 

Saugata Ghose, and Onur Mutlu,

"GenASM: A High-Performance, Low-Power Approximate String Matching

Acceleration Framework for Genome Sequence Analysis”

Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), 

Virtual, October 2020.
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Scrooge
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Our Goals
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Compete with state-of-the-art pairwise sequence 
aligners like Edlib, KSW2, and BiWFA

Build a practical and efficient implementation
of the GenASM algorithm

for multiple computing platforms



Scrooge
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Three novel algorithmic improvements
which address inefficiencies in the GenASM algorithm

Efficient open-source implementations
for CPUs and GPUs

Key Results
Scrooge consistently outperforms GenASM
• 2.1x speedup over GenASM on CPU
• 5.9x speedup over GenASM on GPU
• 3.6x better area efficiency than GenASM as an ASIC

Scrooge consistently outperforms state-of-the-art CPU and GPU baselines, 
including KSW2, Edlib, and BiWFA



Outline
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Executive Summary1
Analysis of GenASM2
Scrooge Algorithm3

Scrooge Implementations4
Evaluation5
Conclusion6



Analysis of GenASM
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ASIC [Senol Cali+]
Application Specific Integrated Circuit

[Senol Cali+], “GenASM: A High-Performance, Low-Power Approximate String Matching 
Acceleration Framework for Genome Sequence Analysis”, MICRO 2020

Can we do better?

CPU

GPU
Is GenASM suitable to 
commodity hardware?

https://arxiv.org/pdf/2009.07692.pdf
https://arxiv.org/pdf/2009.07692.pdf


• Does commodity hardware have enough memory bandwidth 
for the GenASM algorithm?

Roofline Analysis of GenASM
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• Does commodity hardware have enough memory bandwidth 
for the GenASM algorithm?

Roofline Analysis of GenASM
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Inefficiency #1
GenASM cannot saturate commodity hardware with 

computation due to too much data movement
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Memory Footprint Analysis of GenASM
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Memory Footprint Analysis of GenASM
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• Does commodity hardware have enough on-chip memory
for the GenASM algorithm?

32KiB
L1D per Core

99KiB
Shared Memory

per SM

96.5KiB
GenASM

Memory Footprint

96.5KiB
GenASM

Memory Footprint

Second
GenASM Instance

Second
GenASM Instance

Third
GenASM Instance

Fourth
GenASM Instance

To Utilize
Simultaneous Multithreading

(Hyperthreading in Intel speak)

To Utilize
Simultaneous Multithreading

…

Inefficiency #2
GenASM has a large memory footprint, 

especially when multiple instances are kept in 
memory for simultaneous multithreading

CPU
Intel Xeon Gold 5118

GPU
NVIDIA RTX A6000
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Text A C G T -

Exact Match

1 Edit

2 Edits

3 Edits

4 Edits

1111 1111 1111 1111 1111

0110 1010 1100 1110 1110

0000 0000 1000 1100 1100

0000 0000 0000 1000 1000

0000 0000 0000 0000 0000

Cannot be Reached by Traceback

Inefficiency #3
GenASM does unnecessary work by computing 
DP cells which cannot be reached by Traceback



1. Large memory bandwidth requirement

2. Large memory footprint

3. Unnecessary work

Inefficiencies in GenASM
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SENE: Store Entries, Not Edges
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SENE: Store Entries, Not Edges
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SENE: Store Entries, Not Edges
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SENE results in a 3x reduction in
memory footprint and data movement



Scrooge Algorithm
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eliminates the unnecessary work
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DENT: Discard Entries Not Used by Traceback
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Text A C G T -

Exact Match

1 Edit

2 Edits

3 Edits

4 Edits

1111 1111 1111 1111 1111

0110 1010 1100 1110 1110

0000 0000 1000 1100 1100

0000 0000 0000 1000 1000

0000 0000 0000 0000 0000

Traceback is confined
due to the “windowing heuristic”

Remaining bits need to be 
computed, but not stored

DENT results in a 4x reduction in
memory footprint and data movement



Scrooge Algorithm
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reduce the memory footprint and data movement
Memory Improvements

SENE
Store Entries, not Edges

DENT
Discard Entries, not Used 

by Traceback

ET
Early Termination

eliminates the unnecessary work
Efficiency Improvement



ET: Early Termination
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Text A C G T -

Exact Match

1 Edit

2 Edits

3 Edits

4 Edits

1111 1111 1111 1111 1111

0110 1010 1100 1110 1110

Cannot be Reached by Traceback

ET eliminates the unnecessary work
on average, at least 25% of cells are unnecessary

Stop building the table as soon as a 0 is found in the leftmost bit
and start traceback
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• We provide efficient open-source implementations 
of the Scrooge algorithm for CPUs and GPUs

• Easy-to-use library interface

• CPU version
• C++
• OpenMP for multithreading

• GPU version
• C++
• NVIDIA GPUs

• CUDA 11.1
• Compute capability 7.0+

Scrooge CPU & GPU Implementations

68



Scrooge on GitHub
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Scrooge on GitHub

https://github.com/CMU-SAFARI/Scrooge
https://github.com/CMU-SAFARI/Scrooge
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• Datasets
• Long reads

• Simulated with PBSIM2 from the human reference genome GRCh38.p13
• Chained with minimap2 to obtain 138,929 candidate pairs

• Short reads
• Illumina reads from SRR13278681
• Chained with minimap2 to obtain 9,612,222 candidate pairs

• CPU: dual-socket Intel Xeon Gold 5118
• 2× 12 physical cores, 2× 24 logical cores @ 3.2GHz
• 196GiB DDR4 RAM

• GPU: NVIDIA RTX A6000

• ASIC
• 28nm logic synthesis from [Senol Cali+]
• SRAM numbers from CACTI 7

Methodology

71



Long Read Throughput
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For long reads, Scrooge outperforms GenASM
by 2.1x on CPU and 5.9x on GPU

Long Read Throughput

73

H
ig

he
r i

s 
be

tt
er

A
lig

nm
en

ts
 p

er
 S

ec
on

d

CPU GPU



Short Read Throughput

74

H
ig

he
r i

s 
be

tt
er

A
lig

nm
en

ts
 p

er
 S

ec
on

d

CPU GPU



Short Read Throughput

75

H
ig

he
r i

s 
be

tt
er

A
lig

nm
en

ts
 p

er
 S

ec
on

d

For short reads, Scrooge outperforms GenASM
by 3.8x on CPU and 2.4x on GPU

CPU GPU



ASIC Results
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Scrooge introduces
no significant computation overheads

over a GenASM ASIC

Scrooge’s on-chip memory is much cheaper than GenASM’s
due to the memory footprint and bandwidth reductions

(uses 18x less chip area and 18x less power) 

Scrooge uses 3.6x less chip area
and 2.1x less power than a GenASM ASIC 



• Throughput sensitivity to each algorithmic improvement

• Thread scaling results

• Rigorous accuracy analysis

• Sensitivity analysis of throughput and accuracy

• ASIC breakdown

More in the Paper: Evaluation

77



More in the Paper

78Scrooge on arXiv Scrooge on GitHubScrooge in Bioinformatics

https://arxiv.org/pdf/2208.09985.pdf
https://arxiv.org/pdf/2208.09985.pdf
https://github.com/CMU-SAFARI/Scrooge
https://github.com/CMU-SAFARI/Scrooge
https://arxiv.org/pdf/2208.09985.pdf
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Motivation

Pairwise sequence alignment (PSA) is computationally costly and 
common step in bioinformatics pipelines. GenASM is a promising 
candidate for efficient PSA. For example, its ASIC implementation is 
up  to 10,000x faster than prior software aligners.

Conclusion

Scrooge
•Three novel algorithmic improvements address GenASM’s inefficiencies
•Efficient open-source CPU and GPU implementations

Key Results

Scrooge consistently outperforms GenASM
• 2.1x speedup over GenASM on CPU
• 5.9x speedup over GenASM on GPU
• 3.6x better area efficiency than GenASM on ASIC
Scrooge consistently outperforms state-of-the-art CPU and GPU 
baselines, including KSW2, Edlib, and BiWFA

Goals

• Build a practical and efficient implementation of the GenASM 
algorithm for multiple computing platforms

• Compete with state-of-the-art pairwise sequence aligners
like Edlib, KSW2, and BiWFA
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ASIC Breakdown
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Scrooge has insignificant 
computation overheads

Significant resource savings
from memory footprint

and bandwidth reductions

Scrooge uses 3.6x less chip area
and 2.1x less power than a GenASM ASIC 



GenASM-DC Algorithm
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Fulls Roofline Models
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Bitvector Interpretation
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CPU Thread Scaling
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GPU Thread Scaling
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CPU Optimization Sensitivity
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Accuracy Comparison
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Accuracy Sensitivity to Window Overlap O
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Failure Mode for Too Small Window Size W
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Failure Mode for Too Small Window Size W

94
Correct Alignment

Too Small 
Window Size W



Long Read Dataset (Ground Truth)
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Long Read Dataset
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