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Genome Sequencing

 Genome sequencing: Enables us to determine the order of the DNA
sequence in an organism’s genome

o Plays a pivotal role in: \’[}7‘ g
= Personalized medicine L""\‘ X -
= Qutbreak tracing Genome DNA

= Understanding of evolution

1 Modern genome sequencing machines extract smaller randomized
fragments of the original DNA sequence, known as reads

o Short reads: a few hundred base pairs, error rate of ~0.1%
o Long reads: thousands to millions of base pairs, error rate of 10-15%
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Genome Sequence Analysis

d Read mapping: First key step in genome sequence analysis (GSA)

o Aligns reads to one or more possible locations within
the reference genome, and

o Finds the matches and differences between the read and
the reference genome segment at that location

 Multiple steps of read mapping require approximate string matching

o Approximate string matching (ASM) enables read mapping to
account for sequencing errors and genetic variations in the reads

1 Bottlenecked by the computational power and memory bandwidth
limitations of existing systems
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GenASM: ASM Framework for GSA

Our Goal:

Accelerate approximate string matching
by designing a fast and flexible framework,
which can accelerate multiple steps of genome sequence analysis

J GenASM: First ASM acceleration framework for GSA

o Based upon the Bitap algorithm
= Uses fast and simple bitwise operations to perform ASM

o Modified and extended ASM algorithm
= Highly-parallel Bitap with long read support
= Novel bitvector-based algorithm to perform traceback

o Co-design of our modified scalable and memory-efficient algorithms
with low-power and area-efficient hardware accelerators
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Use Cases & Key Results

(1) Read Alignment

O 116x speedup, 37x less power than Minimap2 (state-of-the-art SW)

O 111x speedup, 33x less power than BWA-MEM (state-of-the-art SW)

3 3.9x better throughput, 2.7x less power than Darwin (state-of-the-art HW)

O 1.9x better throughput, 82% less logic power than GenAX (state-of-the-art HW)

(2) Pre-Alignment Filtering
O 3.7x speedup, 1.7x less power than Shouji (state-of-the-art HW)

(3) Edit Distance Calculation
1 22-12501x speedup, 548-582x less power than Edlib (state-of-the-art SW)
] 9.3-400x speedup, 67x less power than ASAP (state-of-the-art HW)
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Source: Prof. Onur Mutlu’s lecture slides

Billions of Short Reads
ATATATACGTACTAGTACG

AGTACGTACG
ATACGTACTAGTACG

G ACGTA
ACGTACTAGTACG Short Read
AGTA ACG
G G
GTACTAGTA

G
ACGTACTAAAGTA
A G

AAAACGTA
GTA

A

GTACTAGTACG
GGGAGTA

G

Reference Genome

!l Sequencing Genome Read Mapping n

Analysis
reference: TTTATCGCTTCCATGACGCAG
readl: ATCGCATCC
read2: TATCGCATC
read3: CATCCATGA
read4: CGCTTCCAT
read5: CCATGACGC
read6: TTCCATGAC

a Variant Calling Scientific Discoveryn


https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture3a-genomeanalysisintroduction-afterlecture.pdf

Source: Prof. Onur Mutlu’s lecture slides

Billions of Short Reads
ATATATACGTACTAGTACG

AGTACGTACG
ATACGTACTAGTACG

Reference Genome

Sequencing Read Mapping

Bottlenecked in Mapping!!

[llumina HiSeqg4000 025(24@%;%@ 11
300 M 1 2M
= bases/min

bases/min TT ( 0 69 )



https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture3a-genomeanalysisintroduction-afterlecture.pdf
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Pairwise Sequence Alignment (PSA)

« Compare a pair of strings
* while allowing substitutions, insertions, and deletions

SAFARI
SALAM I
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Pairwise Sequence Alignment (PSA)

« Compare a pair of strings
» while allowingsubstitutions,insertions, and deletions
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Pairwise Sequence Alignment (PSA)

Compare a pair of strings
while allowing substitutions, iInsertions, and deletions

substitutions
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Pairwise Sequence Alignment (PSA)

Compare a pair of strings
while allowing substitutions, iInsertions, and deletions

substitutions

SAFARI
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Pairwise Sequence Alignment (PSA)

« Compare a pair of strings
» while allowing substitutions, insertions, anddeletions

substitutions insertions
SAFAR SA-FAR
SAILAMI SAHFAR I
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Pairwise Sequence Alignment (PSA)

« Compare a pair of strings
» while allowing substitutions, insertions, anddeletions

substitutions insertions
SAFAR SA-FAR
SAILAMI SAHFAR I
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Pairwise Sequence Alignment (PSA)

Compare a pair of strings
while allowing substitutions, insertions, and deletions
The total number of edits should be minimal

substitutions insertions
SAFARII SA=FARII
S A M | S Rl

AR
2=1X1=1X1=

The CIGAR string
is the output of PSA T
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Arithmetic Dynamic Programming for PSA

A C G
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Next entry is calculated from three neighbors
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The Bitap Algorithm

Next entry is calculated from three neighbors

using bitwise operations

Text A C G T -
Exact Match | 1111 | 1111 | 1111 | 1111 | 1111

1 Edit 0110 | 1010 | 1100 | 1110 | 1110

2 Edits | 0000 | 0000 ({1000 1100

3Edits | 0000 | 0000 |[0000K1000]| 1000

4 Edits | 0000 | 0000 | 0000 | 0000 | 0000
Bitap

[P

articularly efficient
in hardware

SAFARI
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Bitap Algorithm (cont'd.)

R[0] = (oldR[0] <<

!opy previous R !itvectors as oldR

1) | PM [char]

!e‘etion

= oldR[d-1]

substitution = oldR[d-1] << 1

insertion

match

= R[d-1] << 1

= (oldR[d] << 1) | PM [char]

Large number of
iterations

R[d] = deletion & mismatch & insertion & match
Check MSB of R[d]:

SAFARI

If 1, no match.

If 0, match with d many errors.
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Bitap Algorithm (cont'd.)

For each character of the text (char):

Copy previous R bitvectors as oldR
R[0] = (oldR[0] << 1) | PM [char]

Ford=1...k:
deletion = oldR[d-1] Data dependepcy
o between iterations
substitution = oldR[d-1] << 1 (i.e. no
insertion =R[d-1]<<1 parallelization)
match = (oldR[d] << 1) | PM [char]
R[d] = deletion & mismatch & insertion & match
Check MSB of R[d]:
If 1, no match.
If 0, match with d many errors.
SAFARI
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Bitap Algorithm (cont'd.)

For each character of the text (char):
Copy previous R bitvectors as oldR
R[0] = (oldR[0] << 1) | PM [char]

Ford=1..k: Does not store and process
deletion = oldR[d-1] these intermediate bitvectors
substitution = oldR[d-1] << 1 to find the optimal alignment
certion SRIA- 1221 (i.e., no traceback)
match = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match
Check MSB of R[d]:

If 1, no match.

If 0, match with d many errors.

SAFARI 21



Limitations of Bitap

1) Data Dependency Between Iterations: Algorithm
o Two-level data dependency forces the consecutive iterations to take
place sequentially

2) No Support for Traceback:
o Bitap does not include any support for optimal alignment identification

3) No Support for Long Reads:
o Each bitvector has a length equal to the length of the pattern
o Bitwise operations are performed on these bitvectors

4) Limited Compute Parallelism: Hardware
o Text-level parallelism
o Limited by the number of compute units in existing systems

5) Limited Memory Bandwidth:
o High memory bandwidth required to read and write the computed
bitvectors to memory

AFARI
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GenASM: ASM Framework for GSA

O Approximate string matching (ASM) acceleration framework based
on the Bitap algorithm

 First ASM acceleration framework for genome sequence analysis

O We overcome the five limitations that hinder Bitap’s use in genome
sequence analysis:

o Modified and extended ASM algorithm
= Highly-parallel Bitap with long read support

= Novel bitvector-based algorithm to perform traceback

o Specialized, low-power and area-efficient hardware for both
modified Bitap and novel traceback algorithms

SAFARI
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The GenASM-DC Algorithm

Text A C G T -
Exact Match | 1111 | 1111 | 1111 | 1111 | 1111
1 Edit 0110 | 1010 | 1100 | 1110 | 1110
2 Edits | 0000 | 0000 ||1000]||1100]| 1100
3Edits | 0000 | 0000 | [0000K000)| 1000
4 Edits 0000 | 0000 | 0000 | 0000 | 0000
a N
GenASM-DC stores all computed bitvectors
for later “traceback
\_ J

SAFARI
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The GenASM-TB Algorithm

[

The row number is | e
the edit distance

Search leftmost column ]
for the topmost O

C G T

EX tch (|4)11 | 1112 | 1221 | 1211 | 11
1 Edit 0 0 0 Of1110
2 Edits 0p0oo | 0000 | 1000 | 1100 | 1100
3 Edits 0p0o | 0000 | 0000 | 1000 | 1000
4 Edits 0p00 | 0000 | 0000 | 0000 | 0000
g Traceback obtains the CIGAR string h
by backtracking the origin
g of the topmost O in the leftmost column. )

SAFARI
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GenASM Hardware Design

Main DC-SRAM
Memory ) >
GenASM-DC
Accelerator
Host R
CPU ]

GenASM-DC | GenASM-TB

A 4

TB-SRAM,

TB-SRAM,

GenASM-TB

TB-SRAM,

\ 4

Accelerator

GenASM-DC:
generates bitvectors
and performs edit
Distance Calculation

SAFARI

GenASM-TB:
performs TraceBack
and assembles the
optimal alignment
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GenASM Hardware Desig

Main

.2

Memory

Host
CPU

reference
text
& query
pattern

o

DC-SRAM

reference
& query
locations
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sub-text &
sub-pattern

\

GenASM-DC
Accelerator

Generate

bitvectors e

-

GenASM-DC | GenASM-TB

(5]

Write
bitvectors

>

TB-SRAM,

TB-SRAM,

6]

7,

Find the
traceback output

TB-SRAM,,

Read
bitvectors

\ 4

GenASM-TB
Accelerator

GenASM-DC:
generates bitvectors
and performs edit
Distance Calculation

GenASM-TB:

performs TraceBack
and assembles the
optimal alignment
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GenASM Hardware Desig

-

GenASM-DC : GenASM-TB
Main (2] DC-SRAM :
Memory reference | : 0
text : Find the
& query 6 ssuubb--t:‘zfcte%n : traceback output
pattern Fi TB-SRAM,
GenASM-DC 6 »|| TB-SRAM, @ »| GenASM-TB
Accelerator Write : Read Accelerator
bitvectors : bitvectors
Host G . -
CPU reference Generate TB-SRAM,
& query bitvectors 9
locations

Our specialized compute units and on-chip SRAMs help us to:
> Match the rate of computation with memory capacity and bandwidth

—> Scale linearly in performance with
the number of parallel compute units that we add to the system
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GenASM-DC: Hardware Design

O Linear cyclic systolic array based accelerator

o Designed to maximize parallelism and minimize memory bandwidth and
memory footprint

TB-SRAM, TB-SRAM, TB-SRAMP_1 TB-SRAMp
A A A A
.................... L--»-Intermediate Bitvectors «-4-
l_ OldR OldR
OldR in = > —> < > -
N D PC out PC out PC
DC-SRAM . o 2 O 2 O e 2 N e 2 [
PM in i T PM | N PM - T 1,
|>_| out out |>_|
— PE, PE,.. PE,
: Processing Block (PB)
I Deletion
OldR[d-1] Ell Substitution
Rld-1] [<<} _’}—» RId]
OldR[d]— Insertion
PatternMask —| Match

Processing Core (PC)

SAFARI
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GenASM-TB: Hardware Design

> Last CIGAR

match ~ M

64 , insertion

Bitwise

deletlon> Comparisons

r 64/ 64, - subs

A\ 4

D> CIGAR string

out 49

A 4

Next Rd
Addr
Compute
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1 +
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1

1

1

1

1

1

1

«J GenASM-TB

O Very simple logic:

) Reads the bitvectors from one of the TB-SRAMs using the computed

address

1.5KB
TB-SRAM,

€ Performs the required bitwise comparisons to find the traceback output

for the current position

€) Computes the next TB-SRAM address to read the new set of bitvectors

SAFARI
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Evaluation Methodology

J We evaluate GenASM using:
o Synthesized SystemVerilog models of the GenASM-DC and
GenASM-TB accelerator datapaths
o Detailed simulation-based performance modeling

1 16GB HMC-like 3D-stacked DRAM architecture
o 32vaults
o 256GB/s of internal bandwidth, clock frequency of 1.25GHz
o In order to achieve high parallelism and low power-consumption
o Within each vault, the logic layer contains a GenASM-DC
accelerator, its associated DC-SRAM, a GenASM-TB accelerator,
and TB-SRAM:s.

SAFARI
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Evaluation Methodology (cont'd.)

SW Baselines

HW Baselines

Read Alignment

Minimap2!?
BWA-MEM?

Pre-Alignment Filtering -

Edit Distance Calculation Edlib®

GACT (Darwin)3
SillaX (GenAx)*

Shouiji®

ASAP’

SAFARI

[1] H. Li. "Minimap2: Pairwise Alignment for Nucleotide Sequences." In Bioinformatics, 2018.

[2] H. Li. "Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM." In arXiv, 2013.
[3] Y. Turakhia et al. "Darwin: A genomics co-processor provides up to 15,000 x acceleration on long read assembly." In ASPLOS, 2018.
[4] D. Fujiki et al. "GenAx: A genome sequencing accelerator." In ISCA, 2018.

[5] M. Alser. "Shouiji: A fast and efficient pre-alignment filter for sequence alignment." In Bioinformatics, 2019.
[6] M. Sosi¢ et al. "Edlib: A C/C++ library for fast, exact sequence alignment using edit distance." In Bioinformatics, 2017.
[7] S.S. Banerjee et al. “ASAP: Accelerated short-read alignment on programmable hardware." In TC, 2018.
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Evaluation Methodology (cont'd.)

 For Use Case 1: Read Alignment, we compare GenASM with:

o Minimap2 and BWA-MEM (state-of-the-art SW)
= Running on Intel® Xeon® Gold 6126 CPU (12-core) operating
@2.60GHz with 64GB DDR4 memory
= Using two simulated datasets:
o Long ONT and PacBio reads: 10Kbp reads, 10-15% error rate
o Short lllumina reads: 100-250bp reads, 5% error rate

o GACT of Darwin and SillaX of GenAx (state-of-the-art HW)
= Open-source RTL for GACT
= Data reported by the original work for SillaX
= GACT is best for long reads, SillaX is best for short reads

SAFARI 33



Evaluation Methodology (cont'd.)

[ For Use Case 2: Pre-Alignment Filtering, we compare GenASM with:

o Shouji (state-of-the-art HW — FPGA-based filter)
= Using two datasets provided as test cases:
* 100bp reference-read pairs with an edit distance threshold of 5
* 250bp reference-read pairs with an edit distance threshold of 15

O For Use Case 3: Edit Distance Calculation, we compare GenASM with:

o Edlib (state-of-the-art SW)
= Using two 100Kbp and 1Mbp sequences with similarity ranging
between 60%-99%

o ASAP (state-of-the-art HW — FPGA-based accelerator)
= Using data reported by the original work

SAFARI 3



Key Results — Area and Power

O Based on our synthesis of GenASM-DC and GenASM-TB accelerator
datapaths using the Synopsys Design Compiler with a 28nm LP process:
o Both GenASM-DC and GenASM-TB operate @ 1GHz

GenASM-DC (64 PEs)
GenASM-TB

DC-SRAM (8 KB)
TB-SRAMs (64 x 1.5 KB)

Total (1 vault):
Total (32 vaults):
% of a Xeon CPU core:

SAFARI

Area (mm?)

0.049

0.256

0.334 mm?
10.69 mm?
1%

Power (W)
0.016
0.013 0.033
0.055
0.004
0.009
0.101 W
3.23 W
1%
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Key Results — Area and Power

O Based on our synthesis of GenASM-DC and GenASM-TB accelerator
datapaths using the Synopsys Design Compiler with a 28nm LP process:
o Both GenASM-DC and GenASM-TB operate @ 1GHz

Area (mm?) Power (W)
GenASM-DC (64 PEs) 0.049 0.016
GenASM-TB 0.013 o0
DC-SRAM (8 KB) 0.055
TB-SRAMs (64 x 1.5 KB) 0.256
0.004
0.009

GenASM has low area and power overheads

SAFARI N



Key Results —Use Case 1

(1) Read Alignment Step of Read Mapping
o Find the optimal alignment of how reads map to candidate
reference regions

(2) Pre-Alignment Filtering for Short Reads
o Quickly identify and filter out the unlikely candidate
reference regions for each read

(3) Edit Distance Calculation
o Measure the similarity or distance between two sequences

SAFARI 37



Key Results —Use Case 1 (Long Reads)

B BWA-MEM (12-thread) B GenASM (w/ BWA-MEM)

E Minimap2 (12-thread) B GenASM (w/ Minimap2)

i 116x
648x

t (reads/sec)

2

PacBio - 10% PacBio - 15% ONT - 10% ONT -15% Average

GenASM achieves 648x and 116x speedup over
12-thread runs of BWA-MEM and Minimap?2,
while reducing power consumption by 34x and 37x

J
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Key Results —Use Case 1 (Long Reads)

T 1.E+06 - 1
0 B GACT (Darwin) B GenASM ' 3.9x
g 1.E+o04 i
_§' 1.E+02 E
=3 |
3 :
I—E 1.E+o00 :
iKbp 2Kbp 3Kbp 4Kbp s5Kbp 6Kbp 7Kbp 8Kbp 9Kbp 10Kbp;Average
(HW )
GenASM provides 3.9x better throughput,
6.6x the throughput per unit area, and
10.5x the throughput per unit power,
compared to GACT of Darwin
\_ J

SAFARI
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Key Results —Use Case 1 (Short Reads)

—~ 1E+08
D

a 1E+07
S 1E+06
(0]

3 1E+o5
£ 1E+o04
2 1E+03
%‘ 1E+02
= 1E+01

F 1E+o00

B BWA-MEM (12-thread) B GenASM (w/ BWA-MEM)
@ Minimap2 (12-thread) O GenASM (w/ Minimap2)

158x
X

111

Illumina-100bp lllumina-150bp Illumina-250bp Average

s

SW

GenASM achieves 111x and 158x speedup over
12-thread runs of BWA-MEM and Minimap2,

while reducing power consumption by 33x and 31x

GenASM provides 1.9x better throughput and
uses 63% less logic area and 82% less logic power,
compared to SillaX of GenAx
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Additional Details in the Paper

Details of the GenASM-DC and GenASM-TB algorithms
Big-O analysis of the algorithms

Detailed explanation of evaluated use cases

O O O O

Evaluation methodology details
(datasets, baselines, performance model)

O Additional results for the three evaluated use cases

O Sources of improvements in GenASM
(algorithm-level, hardware-level, technology-level)

d Discussion of four other potential use cases of GenASM

SAFARI
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GenASM [MICRO 2020]

Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian,
Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna,
Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan,
Saugata Ghose, and Onur Mutly,

"GenASM: A High-Performance, Low-Power Approximate String Matching
Acceleration Framework for Genome Sequence Analysis”

Proceedings of the 53rd International Symposium on Microarchitecture (MICRO),
Virtual, October 2020.

GenASM: A High-Performance, Low-Power
Approximate String Matching Acceleration Framework
for Genome Sequence Analysis
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T Carnegie Mellon University ~ ™ Processor Architecture Research Lab, Intel Labs ¥ Bilkent University ~°ETH Ziirich
YFacebook  ©King Mongkut’s University of Technology North Bangkok  *University of lllinois at Urbana—Champaign
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Scrooge

A Fast and Memory-Frugal Genomic Sequence Aligner
for CPUs, GPUs, and ASICs

Joel Lindegger
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Nika Mansouri Ghiasi, Onur Mutlu

April 14th 2023
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Our Goals

Build a practical and efficient implementation
of the GenASM algorithm
for multiple computing platforms

Compete with state-of-the-art pairwise sequence
aligners like Edlib, KSW2, and BIWFA

SAFARI 46



Scrooge

Three novel algorithmic improvements
which address inefficiencies in the GenASM algorithm

Efficient open-source implementations
for CPUs and GPUs

‘Key Results

Scrooge consistently outperforms GenASM

» 2.1x speedup over GenASM on CPU

* 5.9x speedup over GenASM on GPU

» 3.6x better area efficiency than GenASM as an ASIC

Scrooge consistently outperforms state-of-the-art CPU and GPU baselines,
including KSW?2, Edlib, and BIWFA

-
SAFARI
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Outline

1 Executive Summary

P Analysis of GenASM

3 Scrooge Algorithm

4 Scrooge Implementations
5 Evaluation

o Conclusion
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Analysis of GenASM

Application Specific Integrated Circuit

L ASIC [Senol Cali+]

% Can we do better?]

~\

Is GenASM suitable to

commodity hardware?
y

CPU
GPU

SAFARI

[Senol Cali+], “GenASM: A High-Performance, Low-Power Approximate String Matching
Acceleration Framework for Genome Sequence Analysis”, MICRO 2020
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Roofline Analysis of GenASM

* Does commodity hardware have enough memory bandwidth
for the GenASM algorithm?

CPU Desired Operating Point GPU

Intel Xeon Gold 5118 NVIDIA RTX AG6000
| Peak Comp. Tput. {Peak AVX-512 Tpu
4,838 Gop/s 441 Gop/s
|
Lost Performance |
due to Limited Bandwidth '

o“’\"

|
|
|
|

IGenASM
:Algorithm

Operational Intensity Opefational Intensity
Actual Operating Point

SAFAR’ If Data Resides Off-Chip -

Throughput
Higher is better




Roofline Analysis of GenASM
Inefficiency #1

GenASM cannot saturate commodity hardware with
computation due to too much data movement

CPU Desired Operating Point GPU
Intel Xeon Gold 5118 NVIDIA RTX A6000
Peak Comp. Tput. Peak AVX-512 Tpu
w 4,838 Gop/s 441 Gop/s
Q I
5 £ | Lost Performance |
23 'l | due to Limited Bandwidth | !
.0 '
O G oA
£ < & |
= .2 7 l
T Q,sx“ IGenASM
O :Algorithm

v.
& !

Operational Intensity Opefational Intensity
Actual Operating Point

SAFARI If Data Resides Off-Chip -



Memory Footprint Analysis of GenASM

* Does commodity hardware have enough on-chip memory
for the GenASM algorithm?

32KiB |/ 96.5KiB 99KiB (/96.5KiB

L1D per Core GenASM Shared Memory GenASM

Memory Footprint per SM Memory Footprint
Intel Xeon Gold 5118 NVIDIA RTX A6000
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Memory Footprint Analysis of GenASM

* Does commodity hardware have enough on-chip memory
for the GenASM algorithm? -

Fourth
IGenASM Instance

To Utilize -

Simultaneous Multithreading Third

|IGenASM Instance

Simult To U:/:liff_th ding =4 Second Second

imuttaneous Muttithreading GenASM Instance |IGenASM Instance
(Hyperthreading in Intel speak)
96.5KiB 99KiB |(196.5KiB

GenASM Shared Memory GenASM

L13D2Kié3 Memory Footprint per SM Memory Footprint
per Core
Intel Xeon Gold 5118 NVIDIA RTX A6000
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Memory Footprint Analysis of GenASM
Inefficiency #2

GenASM has a large memory footprint,
especially when multiple instances are kept in
memory for simultaneous multithreading

To Utilize J
Simultaneous Multithreading

Third
|IGenASM Instance

Simul To U:/:“Te, hreading = Second Second
i taneou.s _Ut't reading GenASM Instance IGenASM Instance
(Hyperthreading in Intel speak)
96.5KiB 99KiB |[96.5KiB
GenASM Shared Memory GenASM
L1302Ki(|:3 Memory Footprint per SM Memory Footprint
per Core
Intel Xeon Gold 5118 NVIDIA RTX A6000
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Unnecessary Work in GenASM

Text

C

G

Exact Match

1111

1111

1 Edit

2 Edits | 0000 | 0000 | 1000 | 1100 | 1100
3 Edits | 0000 | 0000 | 0000 | 1000 | 1000
4 Edits | 0000 | 0000 | 0000 | 0000 | 0000

. Cannot be Reached by Traceback |

Inefficiency #3
GenASM does unnecessary work by computing
DP cells which cannot be reached by Traceback
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Inefficiencies in GenASM

1. Large memory bandwidth requirement

2. Large memory footprint

3. Unnecessary work

SAFARI
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Outline

1 Executive Summary

P Analysis of GenASM

3 Scrooge Algorithm

4 Scrooge Implementations
5 Evaluation

o Conclusion
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Scrooge Algorithm

Memory Improvements
reduce the memory footprint and data movement

Efficiency Improvement
eliminates the unnecessary work

SAFARI
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Scrooge Algorithm

Memory Improvements
reduce the memory footprint and data movement

DENT
Discard Entries, not Used
9 by Traceback y

Efficiency Improvement
eliminates the unnecessary work

4 N

ET

Early Termination
- /

SAFARI



SENE: Store Entries, Not Edges

Text A C G T -
Exact Match | 1111 | 1111 | 1111 | 1111 | 11
1 Edit 0 J=0=4 0 l-6==>108 0K 1110
2 Edits 0000 | 0000 | 1000 | 1100 | 1100
3 Edits 0000 | 0000 OMOOO 1000
4 Edits 0000 | 0000 | 0000 | 0000 | 0000

SAFARI
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SENE: Store Entries, Not Edges

Text A C G T
Exact Match 1111|1111 (21121111111
1 Edit 1110
2 Edits 0000 1100

3 Edits 000Q | 60
4 Edits P 0000

SAFARI



SENE: Store Entries, Not Edges

Text A C G T
Exact Match | 1111|1111 (1111 (111111

1edit  |[o}se-p{ole2{0P- 1110

2Edits | 0000 | 0000 L22aQl1100 | 1100

SENE results in a 3x reduction in
memory footprint and data movement

Stored

by GenASMv

Insertion
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Scrooge Algorithm

Memory Improvements
reduce the memory footprint and data movement

Efficiency Improvement
eliminates the unnecessary work
e N

ET

Early Termination

- )
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DENT: Discard Entries Not Used by Traceback

Text

Exact Match
1 Edit
2 Edits
3 Edits
4 Edits

Traceback is confined Remaining bits need to be
due to the “windowing heuristic” computed, but not stored

DENT results in a 4x reduction in
memory footprint and data movement
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Scrooge Algorithm

Memory Improvements
reduce the memory footprint and data movement

Efficiency Improvement
eliminates the unnecessary work

SAFARI
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ET: Early Termination

Text A C G T -
Exact Match
1 Edit

— —

Stop building the table as soon as a O is found in the leftmost bit
and start traceback

4Edits  [[]
L Cannot be Reached by Traceback J

ET eliminates the unnecessary work
on average, at least 25% of cells are unnecessary
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Outline

1 Executive Summary
p Analysis of GenASM
3 Scrooge Algorithm
5 Evaluation
o Conclusion
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Scrooge CPU & GPU Implementations

We provide efficient open-source implementations
of the Scrooge algorithm for CPUs and GPUs

Easy-to-use library interface

« CPU version
C++
OpenMP for multithreading

e GPU version

C++

NVIDIA GPUs
« CUDA11.1
« Compute capability 7.0+

SAFARI
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Scrooge on GitHub

% 3 forks
‘= README.md 4 Report repository
Scrooge: A fast and memory-frugal genomic sequence Reloases

aligner for CPUs, GPUs and ASICs No rlcasespublished

Create a new release

Scrooge is a fast pairwise genomic sequence aligner. It efficiently aligns short and long genomic sequence pairs on
multiple computing platforms. It is based on the GenASM algorithm (Senol Cali+, 2020), and adds multiple

algorithmic improvements that significantly improve the throughput and resource efficiency for CPUs, GPUs and Packages
ASICs. For long reads, the CPU version of Scrooge achieves a 20.1x, 1.7x, and 2.1x speedup over KSW2, Edlib, and a No packages published
CPU implementation of GenASM, respectively. The GPU version of Scrooge achieves a 4.0x 80.4x, 6.8x, 12.6x and Publish your first package

5.9x speedup over the CPU version of Scrooge, KSW2, Edlib, Darwin-GPU, and a GPU implementation of GenASM,
respectively. We estimate an ASIC implementation of Scrooge to use 3.6x less chip area and 2.1x less power than a
GenASM ASIC while maintaining the same throughput. Languages
S [

® C335% @ C++324%
Scrooge in our paper on arXiv and in Bioinformatics. ® Python 181% @ Cuda 14.5%

This repository contains Scrooge's CPU and GPU implementations, and several evaluation scripts. We describe

® Makefile 0.9% Shell 0.6%

SAFAR/ Scrooge on GitHub n


https://github.com/CMU-SAFARI/Scrooge
https://github.com/CMU-SAFARI/Scrooge

Outline

1 Executive Summary
p Analysis of GenASM
3 Scrooge Algorithm
4 Scrooge Implementations

6 Conclusion
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Methodology

Datasets

« Longreads

Simulated with PBSIM2 from the human reference genome GRCh38.p13
Chained with minimap?2 to obtain 138,929 candidate pairs

« Shortreads
IlLlumina reads from SRR13278681
Chained with minimap?2 to obtain 9,612,222 candidate pairs

CPU: dual-socket Intel Xeon Gold 5118
« 2% 12 physical cores, 2x 24 logical cores @ 3.2GHz
« 196GiB DDR4 RAM

GPU: NVIDIA RTX A6000

ASIC

« 28nm logic synthesis from [Senol Cali+]
«  SRAM numbers from CACTI 7/

SAFARI
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Long Read Throughput

1 Long Reads
105;

1044

her is better

1033

Alignments per Second
Hi

1023

CPU GPU
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For long reads, Scrooge outperforms GenASM
by 2.1x on CPU and 5.9x on GPU



Short Read Throughput

her is better

Alignments per Second
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Short Reads
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GPU
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by 3.8x on CPU and 2.4x on GPU

For short reads, Scrooge outperforms GenASM



ASIC Results

Scrooge introduces

no significant computation overheads
over a GenASM ASIC

Scrooge’s on-chip memory is much cheaper than GenASM’s
due to the memory footprint and bandwidth reductions

(uses 18x less chip area and 18x less power)

Scrooge uses 3.6x less chip area
and 2.1x less power than a GenASM ASIC
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More in the Paper: Evaluation

* Throughput sensitivity to each algorithmic improvement
 Thread scaling results
* Rigorous accuracy analysis

« Sensitivity analysis of throughput and accuracy

e ASIC breakdown
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More in the Paper
Bioinformatics ISCB?

INTERNATIONAL SOCIETY FOR
COMPUTATIONAL BIOLOGY

Issues  Advance articles Submit v  Alerts About v Q

Article Navigation

JOURNAL ARTICLE ACCEPTED MANUSCRIPT
Scrooge: A Fast and Memory-Frugal Genomic Sequence Aligner for CPUs,
GPUs, and ASICs d

Joél Lindegger ™, Damla Senol Cali, Mohammed Alser, Juan Gomez-Luna, Nika Mansouri Ghiasi, Onur Mutlu =

Bioinformatics, btad151, https://doi.org/10.1093/bioinformatics/btad151
Published: 24 March 2023  Article history v

OFES Oupe

H..:... .1 \
o3

ARfEg
S

o
SAFARI Scrooge in Bioinformatics Scrooge on arX|v Scrooge on GitHub 73



https://arxiv.org/pdf/2208.09985.pdf
https://arxiv.org/pdf/2208.09985.pdf
https://github.com/CMU-SAFARI/Scrooge
https://github.com/CMU-SAFARI/Scrooge
https://arxiv.org/pdf/2208.09985.pdf

Outline

Executive Summary
Analysis of GenASM
Scrooge Algorithm

Scrooge Implementations

OO & W N =

Evaluation
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Conclusion

Motivation

Goals

Scrooge

Key Results

Pairwise sequence alignment (PSA) is computationally costly and
common step in bioinformatics pipelines. GenASM is a promising
candidate for efficient PSA. For example, its ASIC implementation is
up to 10,000x faster than prior software aligners.

* Build a practical and efficient implementation of the GenASM
algorithm for multiple computing platforms

 Compete with state-of-the-art pairwise sequence aligners
like Edlib, KSW2, and BiIWFA

*Three novel algorithmic improvements address GenASM's inefficiencies
*Efficient open-source CPU and GPU implementations

Scrooge consistently outperforms GenASM

* 2.1x speedup over GenASM on CPU

* 5.9x speedup over GenASM on GPU

» 3.6x better area efficiency than GenASM on ASIC

Scrooge consistently outperforms state-of-the-art CPU and GPU
baselines, including KSW?2, Edlib, and BIWFA
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ASIC Breakdown

Significant resource savings
from memory footprint
and bandwidth reductions

Scrooge has insignificant
computation overheads

Area (mm? Power (W)
ASIC Implementation]DC Logic TB Logic DC SRAMJTB SRA otal|DC Logic TB Logic DC SRAM SRAMjtotal
GenASM | 0.049 0.016 0.013 0.256§0.334 0.033 0.004 0.009 0.055§0.101
Scrooge l 0.049 0.016 0.013 0.033 0.004 0.009 0.0030.049

Scrooge uses 3.6x less chip area
and 2.1x less power than a GenASM ASIC
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GenASM-DC Algorithm

Algorithm 1 GenASM-DC Algorithm

SAFARI

Inp

uts: text, pattern, k

Outputs: editDist

1
2
3

11:

12:
13:

14:
15:
16:
17:

. N < LENGTH(text)
. M < LENGTH(pattern)
: PM < BUILDPATTERNMaASKs(pattern)

. R[n][d] « 11..1 < d

foriin(n—1):—-1:0do
char + text|[i]
curPM < PM[char]

R[1][0] +— (R[1 + 1][0] < 1) | curPM
fordinl: kdo
I+ R[l]d—1]«x1
D < R[i+1][d — 1]
S+ Ri+1jd—1]x1
M+ (R[i+1][d] < 1) | curPM
Ri][d] <~ I &D &S &M

18:

19: editDist <« argmin,{msB(R[0][d]) = 0}

> Initialize for all 0 < d < k

> exact match

> insertion

> deletion

> substitution
> match

84



Fulls Roofline Models

a) Intel Xeon Gold 5118 » b) NVIDIA A6000
_ {Peak AVX-512 Tput. | 107 {peak Comp. Tput. i
2 1441 Gop/s //' / 14,838 Gop/s
) i i
o= Peak Scalar Tput. / 12 |
& 10" 1770 Gop/s il
<t ]
3 !
é 1011 5
= 1010, 5
2 GenASM . GenASM
Q Algorithm 10 Algorithm
108 102  100' 100 108 102 100 10
Operational Intensity (64-bit op/B) Operational Intensity (64-bit op/B)
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Bitvector Interpretation

Theorem 1 The entries (bitvectors) of R can be interpreted as

follows:

j-th bit of R|i]|d] = 0 <=
distance(text[i : n), pattern[j : m)) < d
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CPU Thread Scaling

+—WFA adaptive —¢WFA exact *+KSW2 extz =KSW2 extz2_sse -*Edlib -#GenASM -#-Scrooge (Full)

iz Long Reads Short Reads
[ |
£ o] :
o ] ]
= ]
< 47 1
5 | 5
2 31 g
% |
< 21 1
O 7 .
(<) ] J
e, 1 ]
n 1- i
48 16 24 32 40 48 4 8 16 24 392 40 48
CPU Threads CPU Threads
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GPU Thread Scaling

—#—CGenASM (GPU)  =—#&—Scrooge SENE (GPU)  =%=Scrooge DENT (GPU) =—#—=Scrooge Full (GPU)

2 50,0001 ]
S) ] ]
Q | 4
3] ] ]
92 40,000 .
- 4 J
g : :
x 30,0004 .
] ]
g
20,0001 1
g e} | |
é" 10,0001 ]
] (a) Shared Memory | | (b) Global Memory
0 T v L] Ll |l Ll I 1 1 T 1 T L] b Ll 1 Ll T 1 T 1 1
84 336 672 1008 1344 1680 2016 2352 2688 84 336 672 1008 1344 1680 2016 2352 2688
Thread Blocks Thread Blocks
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CPU Optimization Sensitivity

—8—CGenASM (CPU)  =%—=Scrooge SENE (CPU)  =—#&—Scrooge ET (CPU) —®—=Scrooge SENE+ET (CPU)

(a) CPU Scaling (b) CPU W Sensitivity

18,0001
16,0001 ]
14,0001 )
12,0001 )
10,0001 :
8,000 :
6,000 ]
4,000 :
2,000-_ il
U— ™ T T T i

¥ m m = = o= g
o &4

Alignments per Second

16 24 32 40 48 32 64 96 128 160 192 224 256
Threads Window Size (W)

o
00 -
00 -
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Accuracy Comparison

=== Ground Truth Darwin —'—Edlib === KSW2 - WFA adaptive =—®=—Scrooge

[y
o

o
X

e
W

h

Correctly Aligned Bases (Fraction)
=
o

s 32 64 9% 128 160 192 224 256
Window Size (W)
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Accuracy Sensitivity to Window Size W

—&—Scrooge 0.5 (median) Scrooge 0.01 ===-Edlib 0.5 (median) =--=-Edlib 0.01
Scrooge 0.1 Scrooge 0.001  ===-Edlib 0.1 ~==-Edlib 0.001
- — e — e ———————————
P [ S T e e s o & = = ~ —rorer e SRRSE S AT ey
% 10.0004 SEEETY ¥ L C o o g el s O
n 1001
=
) 01 01
=
=
o2 -1001
<¢ -10,0001
- , -200 ,
Long Reads Groundtruth Short Reads
8 32 64 96 128 160 192 224 256 8 32 64 96 128 160 192 224 256
Window Size (W) Window Size (W)
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Accuracy Sensitivity to Window Overlap O

o

3 —o0—W=32 W=64 W=96 W=128 =--=-Edlib

O

m e e e ———— i —— e e e e ] e e e e e e e — ]
10,000

b= 1601

o

&

3

A 0 150-

<

2

< 1401

& -10,000-

E Long Reads Groundtruth Short Reads

- 0 16 32 48 64 80 96 112124 0 16 32 48 64 80 96 112124

- Window Overlap (O) Window Overlap (O)
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Failure Mode for Too Small Window Size W

Edlib edits Scrooge W=16 edits Scrooge W=32 edits
—— Edlib matches ~ —— Scrooge W=16 matches Scrooge W=32 matches
Read
0 2000 4000 6000 8000 10000
0 1 1 1 1
2000 1
4000 +
[
1%}
c
2
[
T
o
6000 A
8000 A
10000
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Failure Mode for Too Small Window Size W

— Edlib edits Scrooge W=16 edits Scrooge W=32 edits
—— Edlib matches ~ —— Scrooge W=16 matches Scrooge W=32 matches
Read
2000 4000 6000 8000 10000
0 1 1 1 1

2000 A

4000 A
3 »
g oo Small
'
L] ° °
(M=
2 dow Size W

6000 A

8000 A

10000

SAFARI Correct Alignment
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Long Read Dataset (Ground Truth)

i 35000 1 i
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: 30000 - i
1 1
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Long Read Dataset

1

120000
_. 100000 A
il
v
o =3
7} m
5 800007 <
3 =3
1%
2 =
ot _ I
> 60000 =
: :
v
3 40000 4

20000 A

0 '_F_ T T T T
10000 11000 12000 13000 14000

Sequence Length (Bases)

SAFARI

Density (#0ccurences)

8000 -

7000

6000 -

0%

10%

40.56%

mean

20% 30% 40% 50%
Fdit Fraction (Fdits ner Rase)

60%

70%

96



Short Read Dataset
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