
P&S Genomics

Lecture 8a: GenASM

Joël Lindegger

ETH Zürich

Spring 2023

27 April 2023

Genome Sequencing
❑ Genome sequencing: Enables us to determine the order of the DNA

sequence in an organism’s genome

o Plays a pivotal role in:

▪ Personalized medicine

▪ Outbreak tracing

▪ Understanding of evolution

❑ Modern genome sequencing machines extract smaller randomized

fragments of the original DNA sequence, known as reads

o Short reads: a few hundred base pairs, error rate of ∼0.1%

o Long reads: thousands to millions of base pairs, error rate of 10–15%

Genome DNA

2

Genome Sequence Analysis
❑ Read mapping: First key step in genome sequence analysis (GSA)

o Aligns reads to one or more possible locations within

the reference genome, and

o Finds the matches and differences between the read and

the reference genome segment at that location

❑ Multiple steps of read mapping require approximate string matching

o Approximate string matching (ASM) enables read mapping to

account for sequencing errors and genetic variations in the reads

❑ Bottlenecked by the computational power and memory bandwidth

limitations of existing systems

3

GenASM: ASM Framework for GSA

❑ GenASM: First ASM acceleration framework for GSA

o Based upon the Bitap algorithm

▪ Uses fast and simple bitwise operations to perform ASM

o Modified and extended ASM algorithm

▪ Highly-parallel Bitap with long read support

▪ Novel bitvector-based algorithm to perform traceback

o Co-design of our modified scalable and memory-efficient algorithms

with low-power and area-efficient hardware accelerators

Our Goal:

Accelerate approximate string matching

by designing a fast and flexible framework,

which can accelerate multiple steps of genome sequence analysis

4

Use Cases & Key Results

(1) Read Alignment

❑ 116× speedup, 37× less power than Minimap2 (state-of-the-art SW)

❑ 111× speedup, 33× less power than BWA-MEM (state-of-the-art SW)

❑ 3.9× better throughput, 2.7× less power than Darwin (state-of-the-art HW)

❑ 1.9× better throughput, 82% less logic power than GenAx (state-of-the-art HW)

(2) Pre-Alignment Filtering

❑ 3.7× speedup, 1.7× less power than Shouji (state-of-the-art HW)

(3) Edit Distance Calculation

❑ 22–12501× speedup, 548–582× less power than Edlib (state-of-the-art SW)

❑ 9.3–400× speedup, 67× less power than ASAP (state-of-the-art HW)

5

Genome
Analysis

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

Short Read

... ...
Reference Genome

Read

Alignment

 CCTATAATACG
C

C
A

T
A
T
A
T
A
C
G

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACGCCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

1 2Sequencing Read Mapping

3 4Variant Calling Scientific Discovery

Source: Prof. Onur Mutlu’s lecture slides

6

https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture3a-genomeanalysisintroduction-afterlecture.pdf

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

Short Read

... ...
Reference Genome

Read

Alignment

 CCTATAATACG
C

C
A

T
A
T
A
T
A
C
G

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACGCCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

1 2Sequencing Read Mapping

3 4Variant Calling Scientific Discovery

300 M
bases/min

Illumina HiSeq4000

2 M
bases/min

on average

(0.6%)

Bottlenecked in Mapping!!

Source: Prof. Onur Mutlu’s lecture slides

7

https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture3a-genomeanalysisintroduction-afterlecture.pdf

Read Mapping

Indexing

Seeding

Pre-Alignment Filtering

Read Alignment

Reference
genome

Hash-table
based index

Potential mapping
locations

Optimal
alignment

Remaining
potential mapping
locations

Reads

Reference
segment

Query read

8

9

Accelerating long-read analysis on modern CPUs,
Kalikar et al., bioRxiv 2022

Read alignment is often the bottleneck
in read mapping

Pairwise Sequence Alignment (PSA)

10

• Compare a pair of strings
• while allowing

S A F A R I
S A L AM I

and deletionssubstitutions, insertions,

Pairwise Sequence Alignment (PSA)

11

S A F A R I
S A L AM I

• Compare a pair of strings
• while allowing and deletionssubstitutions, insertions,

Pairwise Sequence Alignment (PSA)

12

• Compare a pair of strings
• while allowing and deletionsinsertions, substitutions,

S A F A R I
S A H A R IF

substitutions
SA F AR I
SA L AM I

Pairwise Sequence Alignment (PSA)

13

• Compare a pair of strings
• while allowing and deletionsinsertions, substitutions,

S A F A R I
S A H A R IF

-
substitutions

SA F AR I
SA L AM I

Pairwise Sequence Alignment (PSA)

14

• Compare a pair of strings
• while allowing substitutions,

SA F AR I
SAH AR IF

-substitutions
SA F AR I
SA L AM I

insertions

insertions,

S A F A R I
S A A R I

and deletions

Pairwise Sequence Alignment (PSA)

15

• Compare a pair of strings
• while allowing substitutions,

SA F AR I
SAH AR IF

-substitutions
SA F AR I
SA L AM I

insertions

insertions,

S A F A R I
S A A R I-

and deletions

1. Compare a pair of strings
2. while allowing
• The total number of edits should be minimal

Pairwise Sequence Alignment (PSA)

16

• Compare a pair of strings
• while allowing substitutions,

SA F AR I
SAH AR IF

-substitutions
SA F AR I
SA L AM I

insertions

insertions,

SA F AR I
SA AR I-

and deletions

deletions

2=1X1=1X1= 2=1I4=

2=1D3=

The CIGAR string
is the output of PSA

Arithmetic Dynamic Programming for PSA

17

A C G T

A

C

G

A

0 1 2 3 4

1

2

3

4

0 1 2 3 4

1 0 1 2 3

2 1 0 1 2

3 2 1 0 1

4 3 2 1 0

Needleman-Wunsch Smith-Waterman-Gotoh, WFA, …

Next entry is calculated from three neighbors
using arithmetic operations

The Bitap Algorithm

18

A C G T

A

C

G

A

0 1 2 3 4

1

2

3

4

0 1 2 3 4

1 0 1 2 3

2 1 0 1 2

3 2 1 0 1

4 3 2 1 0

Needleman-Wunsch Smith-Waterman-Gotoh, WFA, …

Next entry is calculated from three neighbors
using arithmetic operations

Text A C G T -

Exact Match

1 Edit

2 Edits

3 Edits

4 Edits

1111 1111 1111 1111 1111

0110 1010 1100 1110 1110

0000 0000 1000 1100 1100

0000 0000 0000 1000 1000

0000 0000 0000 0000 0000

Bitap
Next entry is calculated from three neighbors
using bitwise operations

Particularly efficient
in hardware

Large number of
iterations

Bitap Algorithm (cont’d.)

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion = oldR[d-1]

substitution = oldR[d-1] << 1

insertion = R[d-1] << 1

match = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match.

If 0, match with d many errors.

19

Data dependency
between iterations

(i.e., no
parallelization)

Bitap Algorithm (cont’d.)

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion = oldR[d-1]

substitution = oldR[d-1] << 1

insertion = R[d-1] << 1

match = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match.

If 0, match with d many errors.

20

Bitap Algorithm (cont’d.)

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion = oldR[d-1]

substitution = oldR[d-1] << 1

insertion = R[d-1] << 1

match = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match.

If 0, match with d many errors.

Does not store and process
these intermediate bitvectors
to find the optimal alignment

(i.e., no traceback)

21

Hardware

Algorithm

Limitations of Bitap

1) Data Dependency Between Iterations:

o Two-level data dependency forces the consecutive iterations to take

place sequentially

2) No Support for Traceback:

o Bitap does not include any support for optimal alignment identification

3) No Support for Long Reads:

o Each bitvector has a length equal to the length of the pattern

o Bitwise operations are performed on these bitvectors

4) Limited Compute Parallelism:

o Text-level parallelism

o Limited by the number of compute units in existing systems

5) Limited Memory Bandwidth:

o High memory bandwidth required to read and write the computed

bitvectors to memory

22

GenASM: ASM Framework for GSA
❑ Approximate string matching (ASM) acceleration framework based

on the Bitap algorithm

❑ First ASM acceleration framework for genome sequence analysis

❑ We overcome the five limitations that hinder Bitap’s use in genome

sequence analysis:

o Modified and extended ASM algorithm

▪ Highly-parallel Bitap with long read support

▪ Novel bitvector-based algorithm to perform traceback

o Specialized, low-power and area-efficient hardware for both

modified Bitap and novel traceback algorithms

23

The GenASM-DC Algorithm

24

Text A C G T -

Exact Match

1 Edit

2 Edits

3 Edits

4 Edits

1111 1111 1111 1111 1111

0110 1010 1100 1110 1110

0000 0000 1000 1100 1100

0000 0000 0000 1000 1000

0000 0000 0000 0000 0000

GenASM-DC stores all computed bitvectors
for later “traceback”

The GenASM-TB Algorithm

25

Text A C G T -

Exact Match

1 Edit

2 Edits

3 Edits

4 Edits

1111 1111 1111 1111 1111

0110 1010 1100 1110 1110

0000 0000 1000 1100 1100

0000 0000 0000 1000 1000

0000 0000 0000 0000 0000

The row number is
the edit distance

Traceback obtains the CIGAR string
by backtracking the origin

of the topmost 0 in the leftmost column.

Search leftmost column
for the topmost 0

GenASM-DC GenASM-TB

GenASM Hardware Design

GenASM-DC:
generates bitvectors

and performs edit
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the
optimal alignment

Host
CPU

TB-SRAM1

TB-SRAM2

TB-SRAMn

GenASM-TB
Accelerator

GenASM-DC
Accelerator

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Main
Memory

DC-SRAMDC-SRAM

GenASM-DC GenASM-TB

TB-SRAM1

TB-SRAM2

TB-SRAMn

.

.

.

26

GenASM Hardware Design

GenASM-DC GenASM-TB

Host
CPU

TB-SRAM1

TB-SRAM2

TB-SRAMn

GenASM-TB
Accelerator

GenASM-DC
Accelerator

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Main
Memory

DC-SRAMDC-SRAM

GenASM-DC GenASM-TB

TB-SRAM1

TB-SRAM2

TB-SRAMn

.

.

.

reference
& query

locations

Write
bitvectors

reference
text

& query
pattern

sub-text &
sub-pattern

Read
bitvectors

Generate
bitvectors

2

1

3

4

5 6

GenASM-DC:
generates bitvectors

and performs edit
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the
optimal alignment

Read
bitvectors

6
Write

bitvectors

5

Generate
bitvectors 4

sub-text &
sub-pattern3

reference
text

& query
pattern

2

reference
& query

locations

1

Find the
traceback output

7

27

GenASM Hardware Design

GenASM-DC GenASM-TB

Host
CPU

TB-SRAM1

TB-SRAM2

TB-SRAMn

GenASM-TB
Accelerator

GenASM-DC
Accelerator

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Main
Memory

DC-SRAMDC-SRAM

GenASM-DC GenASM-TB

TB-SRAM1

TB-SRAM2

TB-SRAMn

.

.

.

reference
& query

locations

Write
bitvectors

reference
text

& query
pattern

sub-text &
sub-pattern

Read
bitvectors

Find the
traceback output

Generate
bitvectors

2

1

3

4

5 6

7

GenASM-DC:
generates bitvectors

and performs edit
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the
optimal alignment

Our specialized compute units and on-chip SRAMs help us to:

→ Match the rate of computation with memory capacity and bandwidth

→ Achieve high performance and power efficiency

→ Scale linearly in performance with

the number of parallel compute units that we add to the system

28

GenASM-DC: Hardware Design
❑ Linear cyclic systolic array based accelerator

o Designed to maximize parallelism and minimize memory bandwidth and
memory footprint

Processing Block (PB)

Processing Core (PC)

OldR[d-1] <<

<<

<<

R[d-1]

OldR[d]

PatternMask Match

R[d]

Substitution

Insertion

Deletion

OldR
out

PM
out

PM
out

OldR in

PM in

PC

PE1

PC

PE2

PC

PEp-1

PC

PEp

OldR
out

PC

PE

DC-SRAM

TB-SRAMp-1

Intermediate Bitvectors

TB-SRAMpTB-SRAM2TB-SRAM1

29

Bitwise
Comparisons

CIGAR string

Last CIGAR

<<

match

CIGAR
out

1

2
.
.

64

192
insertion

deletion

subs

64

64

64

64

1

2

Next Rd
Addr

Compute

3

GenASM-TB

GenASM-TB: Hardware Design

❑ Very simple logic:

❶Reads the bitvectors from one of the TB-SRAMs using the computed
address
❷Performs the required bitwise comparisons to find the traceback output
for the current position
❸Computes the next TB-SRAM address to read the new set of bitvectors

Bitwise
Comparisons

CIGAR string

Last CIGAR

<<

match

CIGAR
out

1

2
.
.

64

192
insertion

deletion

subs

64

64

64

64

to main
memory

1

2

Next Rd
Addr

Compute

3

1.5KB
TB-SRAM1

1.5KB
TB-SRAM2

1.5KB
TB-SRAM64

1

2

3

30

Evaluation Methodology

❑We evaluate GenASM using:

o Synthesized SystemVerilog models of the GenASM-DC and

GenASM-TB accelerator datapaths

o Detailed simulation-based performance modeling

❑ 16GB HMC-like 3D-stacked DRAM architecture

o 32 vaults

o 256GB/s of internal bandwidth, clock frequency of 1.25GHz

o In order to achieve high parallelism and low power-consumption

o Within each vault, the logic layer contains a GenASM-DC

accelerator, its associated DC-SRAM, a GenASM-TB accelerator,

and TB-SRAMs.

31

Evaluation Methodology (cont’d.)

SW Baselines HW Baselines

Read Alignment
Minimap21

BWA-MEM2

GACT (Darwin)3

SillaX (GenAx)4

Pre-Alignment Filtering – Shouji5

Edit Distance Calculation Edlib6 ASAP7

[1] H. Li. "Minimap2: Pairwise Alignment for Nucleotide Sequences." In Bioinformatics, 2018.
[2] H. Li. "Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM." In arXiv, 2013.

[3] Y. Turakhia et al. "Darwin: A genomics co-processor provides up to 15,000 x acceleration on long read assembly." In ASPLOS, 2018.
[4] D. Fujiki et al. "GenAx: A genome sequencing accelerator." In ISCA, 2018.

[5] M. Alser. "Shouji: A fast and efficient pre-alignment filter for sequence alignment." In Bioinformatics, 2019.
[6] M. Šošić et al. "Edlib: A C/C++ library for fast, exact sequence alignment using edit distance." In Bioinformatics, 2017.

[7] S.S. Banerjee et al. ”ASAP: Accelerated short-read alignment on programmable hardware." In TC, 2018.

32

Evaluation Methodology (cont’d.)

❑ For Use Case 1: Read Alignment, we compare GenASM with:

o Minimap2 and BWA-MEM (state-of-the-art SW)

▪ Running on Intel® Xeon® Gold 6126 CPU (12-core) operating

@2.60GHz with 64GB DDR4 memory

▪ Using two simulated datasets:

◦ Long ONT and PacBio reads: 10Kbp reads, 10-15% error rate

◦ Short Illumina reads: 100-250bp reads, 5% error rate

o GACT of Darwin and SillaX of GenAx (state-of-the-art HW)

▪ Open-source RTL for GACT

▪ Data reported by the original work for SillaX

▪ GACT is best for long reads, SillaX is best for short reads

33

Evaluation Methodology (cont’d.)
❑ For Use Case 2: Pre-Alignment Filtering, we compare GenASM with:

o Shouji (state-of-the-art HW – FPGA-based filter)

▪ Using two datasets provided as test cases:

• 100bp reference-read pairs with an edit distance threshold of 5

• 250bp reference-read pairs with an edit distance threshold of 15

❑ For Use Case 3: Edit Distance Calculation, we compare GenASM with:

o Edlib (state-of-the-art SW)

▪ Using two 100Kbp and 1Mbp sequences with similarity ranging

between 60%-99%

o ASAP (state-of-the-art HW – FPGA-based accelerator)

▪ Using data reported by the original work

34

Key Results – Area and Power
❑ Based on our synthesis of GenASM-DC and GenASM-TB accelerator

datapaths using the Synopsys Design Compiler with a 28nm LP process:

o Both GenASM-DC and GenASM-TB operate @ 1GHz

Total (1 vault): 0.334 mm2 0.101 W

Total (32 vaults): 10.69 mm2 3.23 W

% of a Xeon CPU core: 1% 1%

0.049 0.016

0.013

0.256

Area (mm2)

0.033

0.004

0.009

0.055

Power (W)

0.033

0.004

0.009

0.055
Pow er (W)

GenASM-DC (64 PEs) GenASM-TB DC-SRAM (8 KB) TB-SRAMs (64 x 1.5 KB)

0.033

0.004

0.009

0.055

Power (W)

GenASM-DC (64 PEs)

GenASM-TB

DC-SRAM (8 KB)

TB-SRAMs (64 x 1.5 KB)

35

Key Results – Area and Power
❑ Based on our synthesis of GenASM-DC and GenASM-TB accelerator

datapaths using the Synopsys Design Compiler with a 28nm LP process:

o Both GenASM-DC and GenASM-TB operate @ 1GHz

0.049 0.016

0.013

0.256

Area (mm2)

0.033

0.004

0.009

0.055

Power (W)

0.033

0.004

0.009

0.055
Pow er (W)

GenASM-DC (64 PEs) GenASM-TB DC-SRAM (8 KB) TB-SRAMs (64 x 1.5 KB)

0.033

0.004

0.009

0.055

Power (W)

GenASM-DC (64 PEs)

GenASM-TB

DC-SRAM (8 KB)

TB-SRAMs (64 x 1.5 KB)

GenASM has low area and power overheads

36

Key Results – Use Case 1

(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate

reference regions

(2) Pre-Alignment Filtering for Short Reads

oQuickly identify and filter out the unlikely candidate

reference regions for each read

(3) Edit Distance Calculation

oMeasure the similarity or distance between two sequences

37

Key Results – Use Case 1 (Long Reads)

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

PacBio - 10% PacBio - 15% ONT - 10% ONT - 15% Average

T
h

ro
u

g
h

p
u

t
(r
ea

d
s/
se
c)

BWA-MEM (12-thread) GenASM (w/ BWA-MEM)

Minimap2 (12-thread) GenASM (w/ Minimap2)

GenASM achieves 648× and 116× speedup over

12-thread runs of BWA-MEM and Minimap2,

while reducing power consumption by 34× and 37×

648×

116×

SW

38

Key Results – Use Case 1 (Long Reads)

1.E+00

1.E+02

1.E+04

1.E+06

1Kbp 2Kbp 3Kbp 4Kbp 5Kbp 6Kbp 7Kbp 8Kbp 9Kbp 10Kbp Average

T
h

ro
u

g
h

p
u

t
(r
ea

d
s/
se
c)

GACT (Darwin) GenASM

GenASM provides 3.9× better throughput,

6.6× the throughput per unit area, and

10.5× the throughput per unit power,

compared to GACT of Darwin

3.9×

HW

39

1E+00
1E+01
1E+02
1E+03
1E+04
1E+05
1E+06
1E+07
1E+08

Illumina-100bp Illumina-150bp Illumina-250bp Average

T
h

ro
u

g
h

p
u

t
(r
ea

d
s/
se
c)

BWA-MEM (12-thread) GenASM (w/ BWA-MEM)

Minimap2 (12-thread) GenASM (w/ Minimap2)

Key Results – Use Case 1 (Short Reads)

GenASM achieves 111× and 158× speedup over

12-thread runs of BWA-MEM and Minimap2,

while reducing power consumption by 33× and 31×

111×
158×

GenASM provides 1.9× better throughput and

uses 63% less logic area and 82% less logic power,

compared to SillaX of GenAx

HW

SW

40

Additional Details in the Paper

❑ Details of the GenASM-DC and GenASM-TB algorithms

❑ Big-O analysis of the algorithms

❑ Detailed explanation of evaluated use cases

❑ Evaluation methodology details

(datasets, baselines, performance model)

❑ Additional results for the three evaluated use cases

❑ Sources of improvements in GenASM

(algorithm-level, hardware-level, technology-level)

❑ Discussion of four other potential use cases of GenASM

41

GenASM [MICRO 2020]
Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian,

Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna,

Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan,

Saugata Ghose, and Onur Mutlu,

"GenASM: A High-Performance, Low-Power Approximate String Matching

Acceleration Framework for Genome Sequence Analysis”

Proceedings of the 53rd International Symposium on Microarchitecture (MICRO),

Virtual, October 2020.

42

https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/

P&S Genomics

Lecture 8a: GenASM

Joël Lindegger

ETH Zürich

Spring 2023

27 April 2023

P&S Genomics

Lecture 8b: Scrooge

Joël Lindegger

ETH Zürich

Spring 2023

27 April 2023

Scrooge
A Fast and Memory-Frugal Genomic Sequence Aligner

for CPUs, GPUs, and ASICs

Joël Lindegger
Damla Senol Cali, Mohammed Alser, Juan Gómez-Luna,

Nika Mansouri Ghiasi, Onur Mutlu

April 14th 2023
RECOMB-Seq

Our Goals

46

Compete with state-of-the-art pairwise sequence
aligners like Edlib, KSW2, and BiWFA

Build a practical and efficient implementation
of the GenASM algorithm

for multiple computing platforms

Scrooge

47

Three novel algorithmic improvements
which address inefficiencies in the GenASM algorithm

Efficient open-source implementations
for CPUs and GPUs

Key Results
Scrooge consistently outperforms GenASM
• 2.1x speedup over GenASM on CPU
• 5.9x speedup over GenASM on GPU
• 3.6x better area efficiency than GenASM as an ASIC

Scrooge consistently outperforms state-of-the-art CPU and GPU baselines,
including KSW2, Edlib, and BiWFA

Outline

48

Executive Summary1
Analysis of GenASM2
Scrooge Algorithm3

Scrooge Implementations4
Evaluation5
Conclusion6

Analysis of GenASM

49

ASIC [Senol Cali+]
Application Specific Integrated Circuit

[Senol Cali+], “GenASM: A High-Performance, Low-Power Approximate String Matching
Acceleration Framework for Genome Sequence Analysis”, MICRO 2020

Can we do better?

CPU

GPU
Is GenASM suitable to
commodity hardware?

https://arxiv.org/pdf/2009.07692.pdf
https://arxiv.org/pdf/2009.07692.pdf

• Does commodity hardware have enough memory bandwidth
for the GenASM algorithm?

Roofline Analysis of GenASM

50

Th
ro

ug
hp

ut
H

ig
he

r i
s

be
tt

er

Desired Operating Point

Actual Operating Point
If Data Resides Off-Chip

Lost Performance
due to Limited Bandwidth

CPU
Intel Xeon Gold 5118

GPU
NVIDIA RTX A6000

Operational Intensity Operational Intensity

• Does commodity hardware have enough memory bandwidth
for the GenASM algorithm?

Roofline Analysis of GenASM

51

Th
ro

ug
hp

ut
H

ig
he

r i
s

be
tt

er

Desired Operating Point

Actual Operating Point
If Data Resides Off-Chip

Lost Performance
due to Limited Bandwidth

CPU
Intel Xeon Gold 5118

GPU
NVIDIA RTX A6000

Operational Intensity Operational Intensity

Inefficiency #1
GenASM cannot saturate commodity hardware with

computation due to too much data movement

Memory Footprint Analysis of GenASM

52

• Does commodity hardware have enough on-chip memory
for the GenASM algorithm?

CPU
Intel Xeon Gold 5118

GPU
NVIDIA RTX A6000

32KiB
L1D per Core

99KiB
Shared Memory

per SM

96.5KiB
GenASM

Memory Footprint

96.5KiB
GenASM

Memory Footprint

Memory Footprint Analysis of GenASM

53

• Does commodity hardware have enough on-chip memory
for the GenASM algorithm?

32KiB
L1D per Core

99KiB
Shared Memory

per SM

96.5KiB
GenASM

Memory Footprint

96.5KiB
GenASM

Memory Footprint

Second
GenASM Instance

Second
GenASM Instance

Third
GenASM Instance

Fourth
GenASM Instance

To Utilize
Simultaneous Multithreading

(Hyperthreading in Intel speak)

To Utilize
Simultaneous Multithreading

…

CPU
Intel Xeon Gold 5118

GPU
NVIDIA RTX A6000

Memory Footprint Analysis of GenASM

54

• Does commodity hardware have enough on-chip memory
for the GenASM algorithm?

32KiB
L1D per Core

99KiB
Shared Memory

per SM

96.5KiB
GenASM

Memory Footprint

96.5KiB
GenASM

Memory Footprint

Second
GenASM Instance

Second
GenASM Instance

Third
GenASM Instance

Fourth
GenASM Instance

To Utilize
Simultaneous Multithreading

(Hyperthreading in Intel speak)

To Utilize
Simultaneous Multithreading

…

Inefficiency #2
GenASM has a large memory footprint,

especially when multiple instances are kept in
memory for simultaneous multithreading

CPU
Intel Xeon Gold 5118

GPU
NVIDIA RTX A6000

Unnecessary Work in GenASM

55

Text A C G T -

Exact Match

1 Edit

2 Edits

3 Edits

4 Edits

1111 1111 1111 1111 1111

0110 1010 1100 1110 1110

0000 0000 1000 1100 1100

0000 0000 0000 1000 1000

0000 0000 0000 0000 0000

Cannot be Reached by Traceback

Inefficiency #3
GenASM does unnecessary work by computing
DP cells which cannot be reached by Traceback

1. Large memory bandwidth requirement

2. Large memory footprint

3. Unnecessary work

Inefficiencies in GenASM

56

Outline

57

Executive Summary1
Analysis of GenASM2
Scrooge Algorithm3

Scrooge Implementations4
Evaluation5
Conclusion6

Scrooge Algorithm

58

reduce the memory footprint and data movement

eliminates the unnecessary work

Memory Improvements

SENE
Store Entries, not Edges

DENT
Discard Entries, not Used

by Traceback

Efficiency Improvement

ET
Early Termination

Scrooge Algorithm

59

reduce the memory footprint and data movement

eliminates the unnecessary work

Memory Improvements

SENE
Store Entries, not Edges

DENT
Discard Entries, not Used

by Traceback

Efficiency Improvement

ET
Early Termination

SENE: Store Entries, Not Edges

60

Text A C G T -

Exact Match

1 Edit

2 Edits

3 Edits

4 Edits

1111 1111 1111 1111 1111

0110 1010 1100 1110 1110

0000 0000 1000 1100 1100

0000 0000 0000 1000 1000

0000 0000 0000 0000 0000

SENE: Store Entries, Not Edges

61

Text A C G T -

Exact Match

1 Edit

2 Edits

3 Edits

4 Edits

1111 1111 1111 1111 1111

0110 1010 1100 1110 1110

0000 0000 1000 1100 1100

0000 0000 0000 1000 1000

0000 0000 0000 0000 0000

0
0
0
0

0000
Match

Entry
Stored

by Scrooge
In

se
rt

io
n

0000

Stored
by GenASM

SENE: Store Entries, Not Edges

62

Text A C G T -

Exact Match

1 Edit

2 Edits

3 Edits

4 Edits

1111 1111 1111 1111 1111

0110 1010 1100 1110 1110

0000 0000 1000 1100 1100

0000 0000 0000 1000 1000

0000 0000 0000 0000 0000

0
0
0
0

0000
Match

Entry
Stored

by Scrooge
In

se
rt

io
n

0000

Stored
by GenASM

SENE results in a 3x reduction in
memory footprint and data movement

Scrooge Algorithm

63

reduce the memory footprint and data movement

eliminates the unnecessary work

Memory Improvements

SENE
Store Entries, not Edges

DENT
Discard Entries, not Used

by Traceback

Efficiency Improvement

ET
Early Termination

DENT: Discard Entries Not Used by Traceback

64

Text A C G T -

Exact Match

1 Edit

2 Edits

3 Edits

4 Edits

1111 1111 1111 1111 1111

0110 1010 1100 1110 1110

0000 0000 1000 1100 1100

0000 0000 0000 1000 1000

0000 0000 0000 0000 0000

Traceback is confined
due to the “windowing heuristic”

Remaining bits need to be
computed, but not stored

DENT results in a 4x reduction in
memory footprint and data movement

Scrooge Algorithm

65

reduce the memory footprint and data movement
Memory Improvements

SENE
Store Entries, not Edges

DENT
Discard Entries, not Used

by Traceback

ET
Early Termination

eliminates the unnecessary work
Efficiency Improvement

ET: Early Termination

66

Text A C G T -

Exact Match

1 Edit

2 Edits

3 Edits

4 Edits

1111 1111 1111 1111 1111

0110 1010 1100 1110 1110

Cannot be Reached by Traceback

ET eliminates the unnecessary work
on average, at least 25% of cells are unnecessary

Stop building the table as soon as a 0 is found in the leftmost bit
and start traceback

Outline

67

Executive Summary1
Analysis of GenASM2
Scrooge Algorithm3

Scrooge Implementations4
Evaluation5
Conclusion6

• We provide efficient open-source implementations
of the Scrooge algorithm for CPUs and GPUs

• Easy-to-use library interface

• CPU version
• C++
• OpenMP for multithreading

• GPU version
• C++
• NVIDIA GPUs

• CUDA 11.1
• Compute capability 7.0+

Scrooge CPU & GPU Implementations

68

Scrooge on GitHub

69
Scrooge on GitHub

https://github.com/CMU-SAFARI/Scrooge
https://github.com/CMU-SAFARI/Scrooge

Outline

70

Executive Summary1
Analysis of GenASM2
Scrooge Algorithm3

Scrooge Implementations4
Evaluation5
Conclusion6

• Datasets
• Long reads

• Simulated with PBSIM2 from the human reference genome GRCh38.p13
• Chained with minimap2 to obtain 138,929 candidate pairs

• Short reads
• Illumina reads from SRR13278681
• Chained with minimap2 to obtain 9,612,222 candidate pairs

• CPU: dual-socket Intel Xeon Gold 5118
• 2× 12 physical cores, 2× 24 logical cores @ 3.2GHz
• 196GiB DDR4 RAM

• GPU: NVIDIA RTX A6000

• ASIC
• 28nm logic synthesis from [Senol Cali+]
• SRAM numbers from CACTI 7

Methodology

71

Long Read Throughput

72

H
ig

he
r i

s
be

tt
er

A
lig

nm
en

ts
 p

er
 S

ec
on

d

CPU GPU

For long reads, Scrooge outperforms GenASM
by 2.1x on CPU and 5.9x on GPU

Long Read Throughput

73

H
ig

he
r i

s
be

tt
er

A
lig

nm
en

ts
 p

er
 S

ec
on

d

CPU GPU

Short Read Throughput

74

H
ig

he
r i

s
be

tt
er

A
lig

nm
en

ts
 p

er
 S

ec
on

d

CPU GPU

Short Read Throughput

75

H
ig

he
r i

s
be

tt
er

A
lig

nm
en

ts
 p

er
 S

ec
on

d

For short reads, Scrooge outperforms GenASM
by 3.8x on CPU and 2.4x on GPU

CPU GPU

ASIC Results

76

Scrooge introduces
no significant computation overheads

over a GenASM ASIC

Scrooge’s on-chip memory is much cheaper than GenASM’s
due to the memory footprint and bandwidth reductions

(uses 18x less chip area and 18x less power)

Scrooge uses 3.6x less chip area
and 2.1x less power than a GenASM ASIC

• Throughput sensitivity to each algorithmic improvement

• Thread scaling results

• Rigorous accuracy analysis

• Sensitivity analysis of throughput and accuracy

• ASIC breakdown

More in the Paper: Evaluation

77

More in the Paper

78Scrooge on arXiv Scrooge on GitHubScrooge in Bioinformatics

https://arxiv.org/pdf/2208.09985.pdf
https://arxiv.org/pdf/2208.09985.pdf
https://github.com/CMU-SAFARI/Scrooge
https://github.com/CMU-SAFARI/Scrooge
https://arxiv.org/pdf/2208.09985.pdf

Outline

79

Executive Summary1
Analysis of GenASM2
Scrooge Algorithm3

Scrooge Implementations4
Evaluation5
Conclusion6

80

Motivation

Pairwise sequence alignment (PSA) is computationally costly and
common step in bioinformatics pipelines. GenASM is a promising
candidate for efficient PSA. For example, its ASIC implementation is
up to 10,000x faster than prior software aligners.

Conclusion

Scrooge
•Three novel algorithmic improvements address GenASM’s inefficiencies
•Efficient open-source CPU and GPU implementations

Key Results

Scrooge consistently outperforms GenASM
• 2.1x speedup over GenASM on CPU
• 5.9x speedup over GenASM on GPU
• 3.6x better area efficiency than GenASM on ASIC
Scrooge consistently outperforms state-of-the-art CPU and GPU
baselines, including KSW2, Edlib, and BiWFA

Goals

• Build a practical and efficient implementation of the GenASM
algorithm for multiple computing platforms

• Compete with state-of-the-art pairwise sequence aligners
like Edlib, KSW2, and BiWFA

P&S Genomics

Lecture 8b: Scrooge

Joël Lindegger

ETH Zürich

Spring 2023

27 April 2023

Backup Slides

ASIC Breakdown

83

Scrooge has insignificant
computation overheads

Significant resource savings
from memory footprint

and bandwidth reductions

Scrooge uses 3.6x less chip area
and 2.1x less power than a GenASM ASIC

GenASM-DC Algorithm

84

Fulls Roofline Models

85

Bitvector Interpretation

86

CPU Thread Scaling

87

GPU Thread Scaling

88

CPU Optimization Sensitivity

89

Accuracy Comparison

90

Accuracy Sensitivity to Window Size W

91

Accuracy Sensitivity to Window Overlap O

92

Failure Mode for Too Small Window Size W

93

Failure Mode for Too Small Window Size W

94
Correct Alignment

Too Small
Window Size W

Long Read Dataset (Ground Truth)

95

Long Read Dataset

96

Short Read Dataset

97

	Slide 1: P&S Genomics Lecture 8a: GenASM
	Slide 2: Genome Sequencing
	Slide 3: Genome Sequence Analysis
	Slide 4: GenASM: ASM Framework for GSA
	Slide 5: Use Cases & Key Results
	Slide 6
	Slide 7
	Slide 8: Read Mapping
	Slide 9
	Slide 10: Pairwise Sequence Alignment (PSA)
	Slide 11: Pairwise Sequence Alignment (PSA)
	Slide 12: Pairwise Sequence Alignment (PSA)
	Slide 13: Pairwise Sequence Alignment (PSA)
	Slide 14: Pairwise Sequence Alignment (PSA)
	Slide 15: Pairwise Sequence Alignment (PSA)
	Slide 16: Pairwise Sequence Alignment (PSA)
	Slide 17: Arithmetic Dynamic Programming for PSA
	Slide 18: The Bitap Algorithm
	Slide 19: Bitap Algorithm (cont’d.)
	Slide 20: Bitap Algorithm (cont’d.)
	Slide 21: Bitap Algorithm (cont’d.)
	Slide 22: Limitations of Bitap
	Slide 23: GenASM: ASM Framework for GSA
	Slide 24: The GenASM-DC Algorithm
	Slide 25: The GenASM-TB Algorithm
	Slide 26: GenASM Hardware Design
	Slide 27: GenASM Hardware Design
	Slide 28: GenASM Hardware Design
	Slide 29: GenASM-DC: Hardware Design
	Slide 30: GenASM-TB: Hardware Design
	Slide 31: Evaluation Methodology
	Slide 32: Evaluation Methodology (cont’d.)
	Slide 33: Evaluation Methodology (cont’d.)
	Slide 34: Evaluation Methodology (cont’d.)
	Slide 35: Key Results – Area and Power
	Slide 36: Key Results – Area and Power
	Slide 37: Key Results – Use Case 1
	Slide 38: Key Results – Use Case 1 (Long Reads)
	Slide 39: Key Results – Use Case 1 (Long Reads)
	Slide 40: Key Results – Use Case 1 (Short Reads)
	Slide 41: Additional Details in the Paper
	Slide 42: GenASM [MICRO 2020]
	Slide 43: P&S Genomics Lecture 8a: GenASM
	Slide 44: P&S Genomics Lecture 8b: Scrooge
	Slide 45: Scrooge A Fast and Memory-Frugal Genomic Sequence Aligner for CPUs, GPUs, and ASICs
	Slide 46: Our Goals
	Slide 47: Scrooge
	Slide 48: Outline
	Slide 49: Analysis of GenASM
	Slide 50: Roofline Analysis of GenASM
	Slide 51: Roofline Analysis of GenASM
	Slide 52: Memory Footprint Analysis of GenASM
	Slide 53: Memory Footprint Analysis of GenASM
	Slide 54: Memory Footprint Analysis of GenASM
	Slide 55: Unnecessary Work in GenASM
	Slide 56: Inefficiencies in GenASM
	Slide 57: Outline
	Slide 58: Scrooge Algorithm
	Slide 59: Scrooge Algorithm
	Slide 60: SENE: Store Entries, Not Edges
	Slide 61: SENE: Store Entries, Not Edges
	Slide 62: SENE: Store Entries, Not Edges
	Slide 63: Scrooge Algorithm
	Slide 64: DENT: Discard Entries Not Used by Traceback
	Slide 65: Scrooge Algorithm
	Slide 66: ET: Early Termination
	Slide 67: Outline
	Slide 68: Scrooge CPU & GPU Implementations
	Slide 69: Scrooge on GitHub
	Slide 70: Outline
	Slide 71: Methodology
	Slide 72: Long Read Throughput
	Slide 73: Long Read Throughput
	Slide 74: Short Read Throughput
	Slide 75: Short Read Throughput
	Slide 76: ASIC Results
	Slide 77: More in the Paper: Evaluation
	Slide 78: More in the Paper
	Slide 79: Outline
	Slide 80: Conclusion
	Slide 81: P&S Genomics Lecture 8b: Scrooge
	Slide 82: Backup Slides
	Slide 83: ASIC Breakdown
	Slide 84: GenASM-DC Algorithm
	Slide 85: Fulls Roofline Models
	Slide 86: Bitvector Interpretation
	Slide 87: CPU Thread Scaling
	Slide 88: GPU Thread Scaling
	Slide 89: CPU Optimization Sensitivity
	Slide 90: Accuracy Comparison
	Slide 91: Accuracy Sensitivity to Window Size W
	Slide 92: Accuracy Sensitivity to Window Overlap O
	Slide 93: Failure Mode for Too Small Window Size W
	Slide 94: Failure Mode for Too Small Window Size W
	Slide 95: Long Read Dataset (Ground Truth)
	Slide 96: Long Read Dataset
	Slide 97: Short Read Dataset

