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Genome Sequencing
❑ Genome sequencing: Enables us to determine the order of the DNA 

sequence in an organism’s genome

o Plays a pivotal role in:

▪ Personalized medicine

▪ Outbreak tracing

▪ Understanding of evolution

❑ Modern genome sequencing machines extract smaller randomized 

fragments of the original DNA sequence, known as reads

o Short reads: a few hundred base pairs, error rate of ∼0.1%

o Long reads: thousands to millions of base pairs, error rate of 10–15%
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Genome DNA
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300 M
bases/min

Illumina HiSeq4000  

2 M
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on average

(0.6%)

Bottlenecked in Mapping!!

Source: Prof. Onur Mutlu’s lecture slides
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https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture3a-genomeanalysisintroduction-afterlecture.pdf
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Sequence-to-Sequence (S2S) Mapping Sequence-to-Graph (S2G) Mapping

Genome Sequence Analysis

6

Sequence-to-graph mapping results in notable quality improvements.

However, it is a more difficult computational problem, 

with no prior hardware design.

❑ Mapping the reads to a reference genome (i.e., read mapping) is a 

critical step in genome sequence analysis

Linear Reference: ACGTACGT

Read: ACGG

Alternative Sequence: ACGGACGT

Alternative Sequence: ACGTTACGT

Alternative Sequence: ACG‒ACGT

Graph-based Reference:

Read: ACGG
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SeGraM: First universal algorithm/hardware co-designed genomic 

mapping accelerator that can effectively and efficiently support: 

❑ Sequence-to-graph mapping 

❑ Sequence-to-sequence mapping

❑ Both short and long reads

SeGraM: First Graph Mapping Accelerator
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Our Goal:

Specialized, high-performance, scalable, and low-cost 

algorithm/hardware co-design that alleviates bottlenecks in

multiple steps of sequence-to-graph mapping
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Use Cases & Key Results
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(1) Sequence-to-Graph (S2G) Mapping

❑ 5.9×/106× speedup, 4.1×/3.0× less power than GraphAligner

for long and short reads, respectively (state-of-the-art SW)

❑ 3.9×/742× speedup, 4.4×/3.2× less power than vg 

for long and short reads, respectively (state-of-the-art SW)

(2) Sequence-to-Graph (S2G) Alignment

❑ 41×–539× speedup over PaSGAL with AVX-512 support (state-of-the-art SW)

(3) Sequence-to-Sequence (S2S) Alignment

❑ 1.2×/4.8× higher throughput than GenASM and GACT of Darwin 

for long reads (state-of-the-art HW)

❑ 1.3×/2.4× higher throughput than GenASM and SillaX of GenAX

for short reads (state-of-the-art HW)
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Outline
❑ Introduction

❑ Background
o Read Mapping

o Genome Graphs

o Sequence-to-Graph Mapping

❑ SeGraM: Universal Genomic Mapping Accelerator
o High-Level Overview

o MinSeed

o BitAlign 

o Use Cases

❑ Evaluation

❑ Conclusion
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AACGTTAGCTATTCAGA
CAGGTATTAATAGCCGT
CAGATAGTAGCTAACGT
TAGCTATTCAGACAGGT
ATTAATAGCCGTCAGAT
AGTAGCTACAGGTATTA
ATAGCCGTCAGATAGTA
GCTACAGGTATTAATAG
CCGTCAGATAGTAGCTA

Reference Genome

Solving the Puzzle (S2S Mapping)

For a Human:
3 Billion Characters (3GB)

Determines e.g., Eye Color,
Shape of Face, Allergies, …
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Reference Genome Reads

Solving the Puzzle (S2S Mapping)

For a Human:
3 Billion Characters (3GB)

Determines e.g., Eye Color,
Shape of Face, Allergies, …

150 – 2,000,000 Characters Each

Origin Locations are Unknown
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Reference Genome Reads

Solving the Puzzle (S2S Mapping)

For a Human:
3 Billion Characters (3GB)

Determines e.g., Eye Color,
Shape of Face, Allergies, …

150 – 2,000,000 Characters Each

Origin Locations are Unknown

S2S (Sequence-to-Sequence) Mapping
Recovers the Origin Locations

According to 1 Reference Genome
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S2S Alignment/Mapping Accelerators
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Reference Genome Reads

Solving the Puzzle (S2S Mapping)

Variants
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Reference Genome Reads

Solving the Puzzle (S2S Mapping)

Some Reads Can Be Mapped due 

to Sufficient Context

Some Reads Fail to Be Mapped

Because They are Too Different 

from the Single Reference

Reference Bias!
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❑ Solution 1: Attempt to map to all known reference genomes one-by-one
o For N times slowdown for N reference genomes

o There could be unknown reference genomes (e.g., hybrids)

❑ Solution 2: Build a single graph-based reference that unifies all known 
genetic variations
o Avoids redundant computation and data

o Captures some unknown reference genomes
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Avoiding Reference Bias in Read Mapping



Joël Lindegger

Genome Graphs

Genome graphs:

❑ Combine the linear reference genome with the known genetic 

variations in the entire population as a graph-based data structure

❑ Enable us to move away from aligning with a single linear reference 

genome (reference bias) and more accurately express the genetic 

diversity in a population

17

Sequence #1: ACGTACGT ACGTACGT
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Genome Graphs

Genome graphs:

❑ Combine the linear reference genome with the known genetic 

variations in the entire population as a graph-based data structure

❑ Enable us to move away from aligning with a single linear reference 

genome (reference bias) and more accurately express the genetic 

diversity in a population
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Sequence #1: ACGTACGT

Sequence #2: ACGGACGT

ACGTACGT
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Genome Graphs

Genome graphs:

❑ Combine the linear reference genome with the known genetic 

variations in the entire population as a graph-based data structure

❑ Enable us to move away from aligning with a single linear reference 

genome (reference bias) and more accurately express the genetic 

diversity in a population
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Genome Graphs

Genome graphs:

❑ Combine the linear reference genome with the known genetic 

variations in the entire population as a graph-based data structure

❑ Enable us to move away from aligning with a single linear reference 

genome (reference bias) and more accurately express the genetic 

diversity in a population
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Genome Graphs

Genome graphs:

❑ Combine the linear reference genome with the known genetic 

variations in the entire population as a graph-based data structure

❑ Enable us to move away from aligning with a single linear reference 

genome (reference bias) and more accurately express the genetic 

diversity in a population
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Genome Graphs

Genome graphs:

❑ Combine the linear reference genome with the known genetic 

variations in the entire population as a graph-based data structure

❑ Enable us to move away from aligning with a single linear reference 

genome (reference bias) and more accurately express the genetic 

diversity in a population
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Genome Graphs

Genome graphs:

❑ Combine the linear reference genome with the known genetic 

variations in the entire population as a graph-based data structure

❑ Enable us to move away from aligning with a single linear reference 

genome (reference bias) and more accurately express the genetic 

diversity in a population
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Sequence-to-Graph Mapping Pipeline
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Pre-Processing 
Steps (Offline)

Seed-and-Extend 
Steps (Online)

Indexing
(index the nodes of the graph)

Seeding
(query the index & find the seed matches)

Filtering/Chaining/Clustering
(filter out dissimilar query read and subgraph pairs)

S2G Alignment
(perform distance/score calculation & traceback)

Linear reference 
genome

Known genetic 
variations

Reads from 
sequenced 

genome

0.2

1

2

3

Genome Graph Construction
(construct the graph using a linear reference genome and variations)

0.1

Genome graph

Hash-table-based index (of graph nodes)

Candidate mapping locations (subgraphs)

Remaining candidate mapping locations (subgraphs)

Optimal alignment between read & subgraph
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S2S vs. S2G Alignment
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S2S vs. S2G Alignment
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In contrast to S2S alignment, 

S2G alignment must incorporate non-neighboring characters 

as well whenever there is an edge (i.e., hop) 

from the non-neighboring character to the current character
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Based on our analysis with GraphAligner and vg:

Observation 1: Alignment step is the bottleneck

Observation 2: Alignment suffers from high cache miss rates

Observation 3: Seeding suffers from the DRAM latency bottleneck

Observation 4: Baseline tools scale sublinearly

Observation 5: Existing S2S mapping accelerators are unsuitable 

for the S2G mapping problem

Observation 6: Existing graph accelerators are unable to handle 

S2G alignment

Analysis of State-of-the-Art Tools

28

SW

HW
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Outline
❑ Introduction

❑ Background
o Read Mapping

o Genome Graphs

o Sequence-to-Graph Mapping

❑ SeGraM: Universal Genomic Mapping Accelerator
o High-Level Overview

o MinSeed

o BitAlign

o Use Cases

❑ Evaluation

❑ Conclusion
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SW

HW

SeGraM: Universal Genomic Mapping Accelerator

❑ First universal genomic mapping accelerator that can support both

sequence-to-graph mapping and sequence-to-sequence mapping, 

for both short and long reads

❑ First algorithm/hardware co-design for accelerating 

sequence-to-graph mapping

❑We base SeGraM upon a minimizer-based seeding algorithm

❑We propose a novel bitvector-based alignment algorithm to perform 

approximate string matching between a read and a graph-based 

reference genome

❑We co-design both algorithms with high-performance, scalable,    

and efficient hardware accelerators

30
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SeGraM Hardware Design
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SeGraM Accelerator

MinSeed (MS)

Host 
CPU

Main Memory (graph-based reference & index)

Find 
Minimizers

BitAlign (BA)

Read
Scratchpad

Minimizer 
Scratchpad

Filter
Frequencies 

by Frequency

Seed 
Scratchpad

Find 
Candidate

Seed Regions

MinSeed (MS)

Find 
Minimizers

Read
Scratchpad

Minimizer 
Scratchpad

Filter
Minimizers 

by Frequency

Seed 
Scratchpad

Find 
Candidate

Seed Regions

Input Scratchpad

Generate 
Bitvectors

Perform
Traceback

Bitvector Scratchpad

Hop Queues

BitAlign (BA)

Input Scratchpad

Generate 
Bitvectors

Perform
Traceback

Bitvector Scratchpad

Hop Queues

MinSeed: first hardware 
accelerator for 

Minimizer-based Seeding

BitAlign: first hardware 
accelerator for (Bitvector-based) 

sequence-to-graph Alignment



Joël Lindegger

Host 
CPU

Main Memory (graph-based reference & index)Main Memory (graph-based reference & index)

SeGraM Hardware Design
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SeGraM Accelerator

MinSeed (MS)

Host 
CPU

Find 
Minimizers

query
read

1

BitAlign (BA)

Read
Scratchpad

Minimizer 
Scratchpad

Filter
Minimizers 

by Frequency

Seed 
Scratchpad

Find 
Candidate

Seed Regions

Input Scratchpad

Generate 
Bitvectors

Perform
Traceback

Bitvector Scratchpad

Hop Queues

query k-mers

minimizers

frequencies seed locations graph nodes

2

3

4

5

6

7

8
9

10

11

12 optimal alignment information

MinSeed: first hardware 
accelerator for 

Minimizer-based Seeding

BitAlign: first hardware 
accelerator for (Bitvector-based) 

sequence-to-graph Alignment
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Main Memory (High Bandwidth Memory)

Minimizer
Finder

Read
Scratchpad

(6 kB)

Minimizer 
Scratchpad

(40 kB)

Minimizer 
Filter

by
Frequency

(<?)

Seed 
Scratchpad

(4 kB)

Candidate
Seed 

Region
Calculator
(+/−/×)

MinSeed HW
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❑ MinSeed = 3 computation modules + 3 scratchpads + memory interface

o Computation modules: Implemented with simple logic

o Scratchpads: 50kB in total; employ double buffering technique to 

hide the latency of MinSeed

o High-Bandwidth Memory (HBM): Enables low-latency and     

highly-parallel memory access

Main Memory (High Bandwidth Memory)

Minimizer
Finder

Read
Scratchpad

(6 kB)

Minimizer 
Scratchpad

(40 kB)

Minimizer 
Filter

by
Frequency

(<?)

Seed 
Scratchpad

(4 kB)

Candidate
Seed 

Region
Calculator
(+/−/×)

frequency 
threshold
(INPUT)

error rate, 
read length

(INPUT)

query read 
(INPUT)

candidate 
subgraph
(OUTPUT)
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BitAlign HW

34

❑ Linear cyclic systolic array-based accelerator

❑ Based on the GenASM hardware design*

Bitvector 
Scratchpadx

PC

PEx

Bitvector 
Scratchpadx+1

PC

PEx+1

R[d-1]

HopBits

PatternBitmask

R[d] R[d]

[*] D. Senol Cali et al. "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for 
Genome Sequence Analysis” (MICRO’20)

https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
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BitAlign HW
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❑ Linear cyclic systolic array-based accelerator

❑ Based on the GenASM hardware design*

❑ Incorporates hop queue registers to feed the bitvectors of               

non-neighboring characters/nodes (i.e., hops)

Bitvector 
Scratchpadx

PC

PEx

Bitvector 
Scratchpadx+1

PC

PEx+1

HopQueueRegisterx

R[d-1]

oldR[d] oldR[d-1]

HopBits

PatternBitmask

HopQueueRegisterx+1

R[d]

HopQueueRegisterx-1

oldR[d-1] oldR[d]

R[d]

[*] D. Senol Cali et al. "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for 
Genome Sequence Analysis” (MICRO’20)

https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
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SeGraM Module (1 x per HBM2E stack)SeGraM Module (1 x per HBM2E stack)

High Bandwidth Memory (HBM2E) Stack

Host

. . .

Overall System Design of SeGraM
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. . .

High Bandwidth Memory (HBM2E) Stack

SeGraM
Acc.

SeGraM
Acc.

SeGraM
Acc.

SeGraM
Acc.

SeGraM
Acc.

. . .Host

MS

BA

MS

BA

MS

BA

MS

BA

MS

BA

X 4

CH0 CH1 CH2 CH6 CH7
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Use Cases of SeGraM

(1) Sequence-to-Graph 

Mapping

(2) Sequence-to-Graph

Alignment

(3) Sequence-to-Sequence 

Alignment

(4) Seeding

38

MS BA

MS or
Other BA

BA

MS

MS or
Other

BA or
Other
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Outline
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❑ Background
o Read Mapping

o Genome Graphs

o Sequence-to-Graph Mapping

❑ SeGraM: Universal Genomic Mapping Accelerator
o High-Level Overview

o MinSeed

o BitAlign

o Use Cases

❑ Evaluation

❑ Conclusion
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Evaluation Methodology

❑ Performance, Area and Power Analysis:

o Synthesized SystemVerilog models of the MinSeed and BitAlign 

accelerator datapaths 

o Simulation- and spreadsheet-based performance modeling

❑ Baseline Comparison Points: 

o GraphAligner, vg, and HGA for sequence-to-graph mapping

o PaSGAL for sequence-to-graph alignment

o Darwin, GenAx, and GenASM for sequence-to-sequence alignment

❑ Datasets:

o Graph-based reference: GRCh38 + 7 VCF files for HG001-007

o Simulated datasets for both short and long reads
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Key Results – Area & Power

41

❑ Based on our synthesis of MinSeed and BitAlign accelerator datapaths 

using the Synopsys Design Compiler with a 28nm process (@ 1GHz):
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Key Results – SeGraM with Long Reads

42

SeGraM provides 5.9× and 3.9× throughput improvement

over GraphAligner and vg, 

while reducing the power consumption by 4.1× and 4.4×
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Key Results – SeGraM with Short Reads

SeGraM provides 106× and 742× throughput improvement

over GraphAligner and vg, 

while reducing the power consumption by 3.0× and 3.2×
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BitAlign provides 41×-539× speedup over PaSGAL

Key Results – BitAlign (S2G Alignment)
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Key Results – BitAlign (S2S Alignment)

❑ BitAlign can also be used for sequence-to-sequence alignment

o The cost of more functionality: extra hop queue registers 

o We do not sacrifice any performance 

❑ For long reads (over GACT of Darwin and GenASM): 

o 4.8× and 1.2× throughput improvement, 

o 2.7× and 7.5× higher power consumption, and 

o 1.5× and 2.6× higher area overhead

❑ For short reads (over SillaX of GenAx and GenASM):

o 2.4× and 1.3× throughput improvement
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Outline
❑ Introduction

❑ Background
o Read Mapping

o Genome Graphs

o Sequence-to-Graph Mapping

❑ SeGraM: Universal Genomic Mapping Accelerator
o High-Level Overview

o MinSeed

o BitAlign

o Use Cases

❑ Evaluation

❑ Conclusion
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Additional Details in the Paper

❑ Details of the pre-processing steps of SeGraM

❑ Details of the MinSeed and BitAlign algorithms

❑ Details of the MinSeed and BitAlign hardware designs

❑ Bottleneck analysis of the existing tools

❑ Evaluation methodology details                                                   

(datasets, baselines, performance model)

❑ Additional results for the three evaluated use cases

❑ Sources of improvements in SeGraM                           

❑ Comparison of GenASM and SeGraM
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Conclusion
❑ SeGraM: First universal algorithm/hardware co-designed genomic 

mapping accelerator that supports:

▪ Sequence-to-graph (S2G) & sequence-to-sequence (S2S) mapping

▪ Short & long reads

o MinSeed: First minimizer-based seeding accelerator

o BitAlign: First (bitvector-based) S2G alignment accelerator

❑ SeGraM supports multiple use cases:

o End-to-end S2G mapping

o S2G alignment

o S2S alignment

o Seeding

❑ SeGraM outperforms state-of-the-art software & hardware solutions

48
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SeGraM [ISCA 2022]
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https://people.inf.ethz.ch/omutlu/pub/SeGraM_genomic-sequence-mapping-universal-accelerator_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/SeGraM_genomic-sequence-mapping-universal-accelerator_isca22.pdf
https://iscaconf.org/isca2022/
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SeGraM – GitHub Page
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https://github.com/CMU-SAFARI/SeGraM

https://github.com/CMU-SAFARI/SeGraM
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Genome Sequence Analysis

54

❑ Maps reads collected from an 
individual to a known linear 
reference genome sequence

❑ Emphasizes the genetic variations 
that are present in the single 
reference genome

❑ Ignores other variations that are 
not represented in the single linear 
reference sequence

❑ Introduces reference bias

❑ Replaces the linear reference sequence 
with a graph-based representation of  
the reference genome (genome graph)

❑ Captures the genetic variations and 
diversity across many individuals in a 
population

❑ Results in notable quality improvements 
in GSA

❑ More difficult computational problem

❑ No prior hardware design for graph-
based GSA

❑ Well studied with many available 
tools and accelerators

Sequence-to-Sequence (S2S) Mapping Sequence-to-Graph (S2G) Mapping

❑ Mapping the reads to a reference genome (i.e., read mapping) is a critical 

step in genome sequence analysis (GSA)
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SeGraM – Graph Structure
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SeGraM – Index Structure
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SeGraM – Selection of #Buckets
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Minimizers
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MinSeed – Region Calculation

59



Joël Lindegger

BitAlign Algorithm
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BitAlign – HopBits
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BitAlign – Hop Length Selection

62
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Use Cases of SeGraM
(1) End-to-End Sequence-to-Graph Mapping

o The whole SeGraM design (MinSeed + BitAlign) should be employed 

o We can use SeGraM to perform mapping with both short and long reads 

(2) Sequence-to-Graph Alignment
o BitAlign can be used as a standalone sequence-to-graph aligner without the need 

of an initial seeding tool/accelerator (e.g., MinSeed)

o BitAlign is orthogonal to and can be coupled with any seeding (or filtering) 

tool/accelerator

(3) Sequence-to-Sequence Alignment
o BitAlign can also be used for sequence-to-sequence alignment, as it is a special 

and simpler variant of sequence-to-graph alignment 

(4) Seeding
o MinSeed can be used as a standalone seeding accelerator for both graph-based 

mapping and traditional linear mapping

o MinSeed is orthogonal to and can be coupled with any alignment tool/accelerator
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Sources of Improvement
❑ Co-design approach for both seeding and alignment:

o Efficient and hardware-friendly algorithms for seeding and for 

alignment

o Eliminating the data transfer bottleneck between the seeding and 

alignment steps of the genome sequence analysis pipeline, by 

placing their individual accelerators (MinSeed and BitAlign) 

adjacent to each other

o Pipelining of the two accelerators within a SeGraM accelerator, 

which allows us to completely hide the latency of MinSeed

❑Overcoming the high cache miss rates observed from the baseline 

tools by carefully designing and sizing the on-chip scratchpads and 

the hop queue registers and matching the rate of computation for 

the logic units with memory bandwidth and memory capacity
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Sources of Improvement (cont’d.)
❑Addressing the DRAM latency bottleneck by taking advantage of 

the natural channel subdivision exposed by HBM and eliminating any 

inter-accelerator interference-related latency in the memory system

❑ Scaling linearly across three dimensions:

o Within a single BitAlign accelerator, by incorporating processing 

elements (i.e., iteration-level parallelism), 

o Executing multiple seeds in parallel by using pipelined execution 

with the help of our double buffering approach (i.e., seed-level 

parallelism), and

o Processing multiple reads concurrently without introducing inter-

accelerator memory interference with the help of multiple HBM 

stacks that each contain the same content (i.e., read-level 

parallelism)
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❑ Sequenced genome may not exactly map to the reference genome due 

to genetic variations and sequencing errors

❑ Approximate string matching (ASM):

o Detect the differences and similarities between two sequences

o In genomics, ASM is required to:

▪ Find the minimum edit distance (i.e., total number of edits)

▪ Find the optimal alignment with a traceback step

◦ Sequence of matches, substitutions, insertions and deletions,       

along with their positions

o Usually implemented as a dynamic programming (DP) based algorithm

Approximate String Matching

67

Reference:

Read:

insertionsubstitutiondeletion

A A A AT G T T TA G T G C TA C T G

A A AT G T T TA C T G C TA C T T G

A A A AT G T T TA G T G C TA C T G

A A A AT G T T TA C T G C TA C T T G

A A A AT G T T TA G T G C TA C T G

A A A AT G T T TA G T G C TA C T T G

A A A AT G T T TA G T G C TA C T T G

A A A AT G T T TA G T G C TA C T T GC

A

T

G
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Bitap Algorithm
❑ Bitap1,2 performs ASM with fast and simple bitwise operations

o Amenable to efficient hardware acceleration

o Computes the minimum edit distance between a text (e.g., reference 

genome) and a pattern (e.g., read) with a maximum of k errors 

❑ Step 1: Pre-processing (per pattern)

o Generate a pattern bitmask (PM) for each character in the alphabet  

(A, C, G, T)

o Each PM indicates if character exists at each position of the pattern

❑ Step 2: Searching (Edit Distance Calculation)

o Compare all characters of the text with the pattern by using:

▪ Pattern bitmasks 

▪ Status bitvectors that hold the partial matches 

▪ Bitwise operations
[1] R. A. Baeza-Yates and G. H. Gonnet. "A New Approach to Text Searching." CACM, 1992.

[2] S. Wu and U. Manber. "Fast Text Searching: Allowing Errors." CACM, 1992.
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Bitap Algorithm (cont’d.)

Large number of 
iterations

❑ Step 2: Edit Distance Calculation

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion          = oldR[d-1]

substitution  = oldR[d-1] << 1

insertion         = R[d-1] << 1

match              = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match. 

If 0, match with d many errors.
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Bitap Algorithm (cont’d.)

Data dependency 
between iterations 

(i.e., no 
parallelization)

❑ Step 2: Edit Distance Calculation

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion          = oldR[d-1]

substitution  = oldR[d-1] << 1

insertion         = R[d-1] << 1

match              = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match. 

If 0, match with d many errors.

70



Joël Lindegger

Bitap Algorithm (cont’d.)

❑ Step 2: Edit Distance Calculation

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion          = oldR[d-1]

substitution  = oldR[d-1] << 1

insertion         = R[d-1] << 1

match              = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match. 

If 0, match with d many errors.
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Does not store and process 
these intermediate bitvectors 
to find the optimal alignment 

(i.e., no traceback)
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Example for the Bitap Algorithm

72
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Hardware

Algorithm

Limitations of Bitap

1) Data Dependency Between Iterations:

o Two-level data dependency forces the consecutive iterations to take 

place sequentially

2) No Support for Traceback:

o Bitap does not include any support for optimal alignment identification

3) No Support for Long Reads:

o Each bitvector has a length equal to the length of the pattern

o Bitwise operations are performed on these bitvectors

4) Limited Compute Parallelism:

o Text-level parallelism

o Limited by the number of compute units in existing systems

5) Limited Memory Bandwidth:

o High memory bandwidth required to read and write the computed 

bitvectors to memory
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GenASM: ASM Framework for GSA

❑ GenASM: First ASM acceleration framework for GSA
o Approximate string matching (ASM) acceleration framework based 

on the Bitap algorithm

❑We overcome the five limitations that hinder Bitap’s use in GSA:

o Modified and extended ASM algorithm
▪ Highly-parallel Bitap with long read support
▪ Novel bitvector-based algorithm to perform traceback

o Specialized, low-power and area-efficient hardware for both 
modified Bitap and novel traceback algorithms

Our Goal:

Accelerate approximate string matching 

by designing a fast and flexible framework, 

which can accelerate multiple steps of genome sequence analysis

74

SW

HW



Joël Lindegger

GenASM Algorithm

❑ GenASM-DC Algorithm: 

o Modified Bitap for Distance Calculation

o Extended for efficient long read support

o Besides bit-parallelism that Bitap has, extended for parallelism:

▪ Loop unrolling

▪ Text-level parallelism

❑ GenASM-TB Algorithm: 

o Novel Bitap-compatible TraceBack algorithm

o Walks through the intermediate bitvectors (match, deletion, 

substitution, insertion) generated by GenASM-DC 

o Follows a divide-and-conquer approach to decrease the    

memory footprint
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Loop Unrolling in GenASM-DC

76

Cycle#
Thread1

R0/4
Thread2

R1/5
Thread3

R2/6
Thread4

R3/7

#1 T0-R0 − − −

#2 T1-R0 T0-R1 − −

#3 T2-R0 T1-R1 T0-R2 −

#4 T3-R0 T2-R1 T1-R2 T0-R3

#5 T0-R4 T3-R1 T2-R2 T1-R3

#6 T1-R4 T0-R5 T3-R2 T2-R3

#7 T2-R4 T1-R5 T0-R6 T3-R3

#8 T3-R4 T2-R5 T1-R6 T0-R7

#9 − T3-R5 T2-R6 T1-R7

#10 − − T3-R6 T2-R7

#11 − − − T3-R7

target cell (Rd)
cells target cell depends on (oldRd, Rd-1, oldRd-1) 

data written to memory

data read from memory

Cycle#
Thread1

R0/1/2/..

#1 T0-R0
… …

#8 T0-R7

#9 T1-R0

… …

#16 T1-R7

#17 T2-R0

… …

#24 T2-R7

#25 T3-R0
… …

#32 T3-R7
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Traceback Example with GenASM-TB

77

Deletion Example (Text Location=0)

Text[0]: C Text[1]: G Text[2]: T Text[3]: G    Text[4]: A

Match(C)       Del(–)        Match(T)      Match(G) Match(A)
<3,0,1>       <2,1,1> <2,2,0>       <1,3,0> <0,4,0>

R0- : ....
R1-M : 0111

R0- : ....
R1-D : 1011

R0-M : 1011
R1- : ....

R0-M : 1101
R1- : ....

R0-M : 1110
R1- : ....

Substitution Example (Text Location=1)

Text[1]: G Text[2]: T Text[3]: G    Text[4]: A

Subs(C)       Match(T)      Match(G)       Match(A)
<3,1,1>       <2,2,0> <1,3,0>       <0,4,0>

R0- : ....
R1-S : 0110

R0-M : 1011
R1- : .... 

R0-M : 1101
R1- : ....

R0-M : 1110
R1- : ....

Insertion Example (Text Location=2)

Text[–]    Text[2]: T Text[3]: G    Text[4]: A

Ins(C)       Match(T)      Match(G)       Match(A)
<3,2,1>       <2,2,0> <1,3,0>       <0,4,0>

R0- : ....
R1-I : 0110

R0-M : 1011
R1- : .... 

R0-M : 1101
R1- : ....

R0-M : 1110
R1- : ....
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GenASM-DC GenASM-TB

GenASM Hardware Design

78

GenASM-DC:
generates bitvectors 

and performs edit 
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the 
optimal alignment 

Host 
CPU

TB-SRAM1

TB-SRAM2

TB-SRAMn

GenASM-TB
Accelerator

GenASM-DC
Accelerator

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Main 
Memory

DC-SRAMDC-SRAM

GenASM-DC GenASM-TB

TB-SRAM1

TB-SRAM2

TB-SRAMn

.

.

.
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GenASM Hardware Design

79

GenASM-DC GenASM-TB

Host 
CPU

TB-SRAM1

TB-SRAM2

TB-SRAMn

GenASM-TB
Accelerator

GenASM-DC
Accelerator

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Main 
Memory

DC-SRAMDC-SRAM

GenASM-DC GenASM-TB

TB-SRAM1

TB-SRAM2

TB-SRAMn

.

.

.

reference 
& query 

locations

Write 
bitvectors

reference 
text 

& query 
pattern

sub-text & 
sub-pattern

Read 
bitvectors

Generate 
bitvectors

2

1

3

4

5 6

GenASM-DC:
generates bitvectors 

and performs edit 
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the 
optimal alignment 

Read 
bitvectors

6
Write 

bitvectors

5

Generate 
bitvectors 4

sub-text & 
sub-pattern3

reference 
text 

& query 
pattern

2

reference 
& query 

locations

1

Find the 
traceback output

7
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GenASM Hardware Design
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GenASM-DC GenASM-TB

Host 
CPU

TB-SRAM1

TB-SRAM2

TB-SRAMn

GenASM-TB
Accelerator

GenASM-DC
Accelerator

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Main 
Memory

DC-SRAMDC-SRAM

GenASM-DC GenASM-TB

TB-SRAM1

TB-SRAM2

TB-SRAMn

.

.

.

reference 
& query 

locations

Write 
bitvectors

reference 
text 

& query 
pattern

sub-text & 
sub-pattern

Read 
bitvectors

Find the 
traceback output

Generate 
bitvectors

2

1

3

4

5 6

7

GenASM-DC:
generates bitvectors 

and performs edit 
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the 
optimal alignment 

Our specialized compute units and on-chip SRAMs help us to: 

→ Match the rate of computation with memory capacity and bandwidth 

→ Achieve high performance and power efficiency

→ Scale linearly in performance with                                                                     

the number of parallel compute units that we add to the system
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GenASM-DC: Hardware Design
❑ Linear cyclic systolic array based accelerator

o Designed to maximize parallelism and minimize memory bandwidth and
memory footprint
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Processing Block (PB)

Processing Core (PC)

OldR[d-1] <<

<<

<<

R[d-1]

OldR[d]

PatternMask Match

R[d]

Substitution

Insertion

Deletion

OldR
out

PM 
out

PM
out

OldR in

PM in

PC

PE1

PC

PE2

PC

PEp-1

PC

PEp

OldR
out

PC

PE

DC-SRAM

TB-SRAMp-1

Intermediate Bitvectors

TB-SRAMpTB-SRAM2TB-SRAM1
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Bitwise 
Comparisons

CIGAR string

Last CIGAR

<<

match

CIGAR
out

1

2
.
.

64

192
insertion

deletion

subs

64

64

64

64

1

2

Next Rd 
Addr

Compute

3

GenASM-TB

GenASM-TB: Hardware Design

❑ Very simple logic: 

❶Reads the bitvectors from one of the TB-SRAMs using the computed 
address 
❷Performs the required bitwise comparisons to find the traceback output 
for the current position
❸Computes the next TB-SRAM address to read the new set of bitvectors
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Bitwise 
Comparisons

CIGAR string

Last CIGAR

<<

match

CIGAR
out

1

2
.
.

64

192
insertion

deletion

subs

64

64

64

64

to main 
memory

1

2

Next Rd 
Addr

Compute

3

1.5KB
TB-SRAM1

1.5KB
TB-SRAM2

1.5KB
TB-SRAM64

1

2

3
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Use Cases of GenASM

(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate 

reference regions

(2) Pre-Alignment Filtering for Short Reads

o Quickly identify and filter out the unlikely candidate reference 

regions for each read

(3) Edit Distance Calculation

o Measure the similarity or distance between two sequences

❑ We also discuss other possible use cases of GenASM in our paper:

o Read-to-read overlap finding, hash-table based indexing, whole 

genome alignment, generic text search
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Evaluation Methodology

❑We evaluate GenASM using:

o Synthesized SystemVerilog models of the GenASM-DC and 

GenASM-TB accelerator datapaths 

o Detailed simulation-based performance modeling

❑ 16GB HMC-like 3D-stacked DRAM architecture

o 32 vaults 

o 256GB/s of internal bandwidth, clock frequency of 1.25GHz

o In order to achieve high parallelism and low power-consumption

o Within each vault, the logic layer contains a GenASM-DC 

accelerator, its associated DC-SRAM, a GenASM-TB accelerator, 

and TB-SRAMs.
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Evaluation Methodology (cont’d.)

85

SW Baselines HW Baselines

Read Alignment
Minimap21

BWA-MEM2

GACT (Darwin)3

SillaX (GenAx)4

Pre-Alignment Filtering – Shouji5

Edit Distance Calculation Edlib6 ASAP7

[1] H. Li. "Minimap2: Pairwise Alignment for Nucleotide Sequences." In Bioinformatics, 2018.
[2] H. Li. "Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM." In arXiv, 2013.

[3] Y. Turakhia et al. "Darwin: A genomics co-processor provides up to 15,000 x acceleration on long read assembly." In ASPLOS, 2018.
[4] D. Fujiki et al. "GenAx: A genome sequencing accelerator." In ISCA, 2018.

[5] M. Alser. "Shouji: A fast and efficient pre-alignment filter for sequence alignment." In Bioinformatics, 2019.
[6] M. Šošić et al. "Edlib: A C/C++ library for fast, exact sequence alignment using edit distance." In Bioinformatics, 2017.

[7] S.S. Banerjee et al. ”ASAP: Accelerated short-read alignment on programmable hardware." In TC, 2018.
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Evaluation Methodology (cont’d.)

❑ For Use Case 1: Read Alignment, we compare GenASM with:

o Minimap2 and BWA-MEM (state-of-the-art SW)

▪ Running on Intel® Xeon® Gold 6126 CPU (12-core) operating 

@2.60GHz with 64GB DDR4 memory

▪ Using two simulated datasets:

◦ Long ONT and PacBio reads: 10Kbp reads, 10-15% error rate

◦ Short Illumina reads: 100-250bp reads, 5% error rate

o GACT of Darwin and SillaX of GenAx (state-of-the-art HW)

▪ Open-source RTL for GACT

▪ Data reported by the original work for SillaX

▪ GACT is best for long reads, SillaX is best for short reads
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Evaluation Methodology (cont’d.)
❑ For Use Case 2: Pre-Alignment Filtering, we compare GenASM with:

o Shouji (state-of-the-art HW – FPGA-based filter)

▪ Using two datasets provided as test cases:

• 100bp reference-read pairs with an edit distance threshold of 5

• 250bp reference-read pairs with an edit distance threshold of 15

❑ For Use Case 3: Edit Distance Calculation, we compare GenASM with:

o Edlib (state-of-the-art SW)

▪ Using two 100Kbp and 1Mbp sequences with similarity ranging 

between 60%-99%

o ASAP (state-of-the-art HW – FPGA-based accelerator)

▪ Using data reported by the original work
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Key Results – Area and Power
❑ Based on our synthesis of GenASM-DC and GenASM-TB accelerator 

datapaths using the Synopsys Design Compiler with a 28nm process:

o Both GenASM-DC and GenASM-TB operate @ 1GHz
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Key Results – Area and Power
❑ Based on our synthesis of GenASM-DC and GenASM-TB accelerator 

datapaths using the Synopsys Design Compiler with a 28nm process:

o Both GenASM-DC and GenASM-TB operate @ 1GHz

89

GenASM has low area and power overheads
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Key Results – Use Case 1

(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate 

reference regions

(2) Pre-Alignment Filtering for Short Reads

oQuickly identify and filter out the unlikely candidate 

reference regions for each read

(3) Edit Distance Calculation

oMeasure the similarity or distance between two sequences
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Key Results – Use Case 1 (Long Reads)
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BWA-MEM (12-thread) GenASM (w/ BWA-MEM)

Minimap2 (12-thread) GenASM (w/ Minimap2)

GenASM achieves 648× and 116× speedup over 

12-thread runs of BWA-MEM and Minimap2, 

while reducing power consumption by 34× and 37×

648×

116×

SW
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Key Results – Use Case 1 (Long Reads)
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GenASM provides 3.9× better throughput, 

6.6× the throughput per unit area, and 

10.5× the throughput per unit power, 

compared to GACT of Darwin

3.9×
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Key Results – Use Case 1 (Short Reads)

93

GenASM achieves 111× and 158× speedup over 

12-thread runs of BWA-MEM and Minimap2, 

while reducing power consumption by 33× and 31×

111×
158×

GenASM provides 1.9× better throughput and 

uses 63% less logic area and 82% less logic power, 

compared to SillaX of GenAx

HW

SW



Joël Lindegger

Key Results – Use Case 2

94

(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate 

reference regions

(2) Pre-Alignment Filtering for Short Reads

oQuickly identify and filter out the unlikely candidate 

reference regions for each read

(3) Edit Distance Calculation

oMeasure the similarity or distance between two sequences
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Key Results – Use Case 2
❑ Compared to Shouji:

o 3.7× speedup

o 1.7× less power consumption

o False accept rate of 0.02% for GenASM vs. 4% for Shouji

o False reject rate of 0% for both GenASM and Shouji

95

GenASM is more efficient in terms of 

both speed and power consumption, 

while significantly improving the accuracy 

of pre-alignment filtering

HW
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Key Results – Use Case 3

96

(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate 

reference regions

(2) Pre-Alignment Filtering for Short Reads

oQuickly identify and filter out the unlikely candidate 

reference regions for each read

(3) Edit Distance Calculation

oMeasure the similarity or distance between two sequences
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Key Results – Use Case 3
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GenASM provides 146 – 1458× and 627 – 12501× speedup, 

while reducing power consumption by 548× and 582×

for 100Kbp and 1Mbp sequences, respectively, compared to Edlib

GenASM provides 9.3 – 400× speedup over ASAP, 

while consuming 67× less power

146×
1458×

627×
12501×

HW

SW
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Key Results – Summary

98

(1) Read Alignment

❑ 116× speedup, 37× less power than Minimap2 (state-of-the-art SW)

❑ 111× speedup, 33× less power than BWA-MEM (state-of-the-art SW)

❑ 3.9× better throughput, 2.7× less power than Darwin (state-of-the-art HW)

❑ 1.9× better throughput, 82% less logic power than GenAx (state-of-the-art HW)

(2) Pre-Alignment Filtering

❑ 3.7× speedup, 1.7× less power than Shouji (state-of-the-art HW)

(3) Edit Distance Calculation

❑ 22–12501× speedup, 548–582× less power than Edlib (state-of-the-art SW)

❑ 9.3–400× speedup, 67× less power than ASAP (state-of-the-art HW)
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Additional Details in the Paper

❑ Details of the GenASM-DC and GenASM-TB algorithms

❑ Big-O analysis of the algorithms

❑ Detailed explanation of evaluated use cases

❑ Evaluation methodology details                                             

(datasets, baselines, performance model)

❑ Additional results for the three evaluated use cases

❑ Sources of improvements in GenASM                             

(algorithm-level, hardware-level, technology-level)

❑ Discussion of four other potential use cases of GenASM 
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Summary of GenASM
❑ Problem: 

o Genome sequence analysis is bottlenecked by the computational power and

memory bandwidth limitations of existing systems

o This bottleneck is particularly an issue for approximate string matching

❑ Key Contributions: 

o GenASM: An approximate string matching (ASM) acceleration framework to 

accelerate multiple steps of genome sequence analysis

▪ First to enhance and accelerate Bitap for ASM with genomic sequences

▪ Co-design of our modified scalable and memory-efficient algorithms with 

low-power and area-efficient hardware accelerators

▪ Evaluation of three different use cases: read alignment, pre-alignment 

filtering, edit distance calculation

❑ Key Results: GenASM is significantly more efficient for all the three use cases 

(in terms of throughput and throughput per unit power) than state-of-the-art 

software and hardware baselines
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GenASM [MICRO 2020]

101

Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, 

Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, 

Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, 

Saugata Ghose, and Onur Mutlu,

"GenASM: A High-Performance, Low-Power Approximate String Matching 

Acceleration Framework for Genome Sequence Analysis”

Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), 

Virtual, October 2020.

https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
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GenASM – GitHub Page
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https://github.com/CMU-SAFARI/GenASM

https://github.com/CMU-SAFARI/GenASM
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Genome Sequencing

104

Sample Collection

Preparation

Sequencing

Genome Sequence 
Analysis

Large DNA 
molecule

Chopped DNA 
fragments

Sequenced 
reads

ACGTACCCCGT

GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT

ACGACGTAGCT

AAAAAAAAAA

ACGAGCGGGT
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Sequencing Technologies

105

Short reads: a few hundred base pairs and error rate of ∼0.1%

Long reads: thousands to millions of base pairs and error rate of 5–10%

Oxford Nanopore 
(ONT)

PacBio
Illumina
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Current State of Sequencing (cont’d.)

*From NIH (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)
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https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
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Current State of Sequencing (cont’d.)

*From NIH (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)
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Computation is a bottleneck!

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
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Read Mapping, method of aligning the 
reads against the reference genome in 

order to detect matches and variations.

ACGTACCCCGT

GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT ACGACGTAGCT

AAAAAAAAAAACGAGCGGGT Reads

De novo Assembly, method of 
merging the reads in order to construct

the original sequence.

Reference
Genome

Original
Sequence

Genome Sequence Analysis
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Reads Mapped Reads Reads Assembled Reads
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Read Mapping Pipeline
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Indexing
(Pre-processing step to generate index of reference)

Seeding
(Query the index)

Pre-Alignment Filtering
(Filter out dissimilar sequences)

Read Alignment
(Perform distance/score calculation & traceback)

Reference
genome

Hash-table 
based index

Potential mapping 
locations

Optimal 
alignment

Remaining 
potential mapping 
locations

Reads

Reference
segment

Query read
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Genome Assembly Pipeline Using Long Reads

Basecalling
(Translates signal data into bases: A,C,G,T)

Read-to-Read Overlap Finding
(Finds pairwise read alignments for each pair of read)

Assembly
(Traverses the overlap graph & constructs the draft assembly)

Read Mapping
(Maps the reads to the draft assembly)

Raw signal 
data

Assembly

DNA reads

Overlaps

Draft assembly

Improved 
assembly

Polishing
(Polishes the draft assembly & increases the accuracy)

Mappings of 
reads against 
draft assembly

❑ With the emergence of long read sequencing technologies, de novo assembly 

becomes a promising way of constructing the original genome. 
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Our Contributions

❑ Analyze the tools in multiple dimensions: accuracy, 

performance, memory usage, and scalability

❑ Reveal new bottlenecks and trade-offs

❑ First study on bottleneck analysis of nanopore sequence 

analysis pipeline on real machines

❑ Provide guidelines for practitioners

❑ Provide guidelines for tool developers
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Key Findings
❑ Laptops are becoming a popular platform for running genome assembly

tools, as the portability of a laptop makes it a good fit for in-field analysis

o Greater memory constraints
o Lower computational power
o Limited battery life

❑ Memory usage is an important factor that greatly affects the performance
and the usability of the tool

o Data structure choices that increase the memory requirements
o Algorithms that are not cache-efficient
o Not keeping memory usage in check with the number of threads

❑ Scalability of the tool with the number of cores is an important requirement.
However, parallelizing the tool can increase the memory usage

o Not dividing the input data into batches
o Not limiting the memory usage of each thread
o Dividing the dataset instead of the computation between simultaneous threads
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Key Findings
❑ Laptops are becoming a popular platform for running genome assembly

tools, as the portability of a laptop makes it a good fit for in-field analysis

o Greater memory constraints,
o Lower computational power
o Limited battery life

❑ Memory usage is an important factor that greatly affects the performance
and the usability of the tool

o Data structure choices that can minimize the memory requirements
o Cache-efficient algorithms
o Keeping memory usage in check with the number of threads

❑ Scalability of the tool with the number of cores is an important requirement.
However, parallelizing the tool can increase the memory usage.

o Dividing the input data into batches
o Limiting the memory usage of each thread
o Dividing the computation instead of the dataset between simultaneous threads
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Goal 1:
High-performance and low-power

Goal 2:
Memory-efficient

Goal 3:
Scalable/highly-parallel
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Nanopore Sequencing  & Tools
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