
P&S Genomics

Lecture 9: SeGraM

Joël Lindegger

ETH Zürich

Spring 2023

4 May 2023

Joël Lindegger

Previous Lecture: GenASM and Scrooge

2

Damla Senol Cali, Konstantinos Kanellopoulos, Joël Lindegger, Zulal Bingol, Gurpreet S. Kalsi,

Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie S. Kim, Nika Mansouri Ghiasi,

Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser,

Sreenivas Subramoney, Can Alkan, Saugata Ghose, Onur Mutlu

SeGraM
A Universal Hardware Accelerator

for Genomic Sequence-to-Graph

and Sequence-to-Sequence Mapping

ISCA 2022

Joël Lindegger

Genome Sequencing
❑ Genome sequencing: Enables us to determine the order of the DNA

sequence in an organism’s genome

o Plays a pivotal role in:

▪ Personalized medicine

▪ Outbreak tracing

▪ Understanding of evolution

❑ Modern genome sequencing machines extract smaller randomized

fragments of the original DNA sequence, known as reads

o Short reads: a few hundred base pairs, error rate of ∼0.1%

o Long reads: thousands to millions of base pairs, error rate of 10–15%

4

Genome DNA

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

Short Read

... ...
Reference Genome

Read

Alignment

 CCTATAATACG
C

C
A

T
A
T
A
T
A
C
G

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACGCCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

1 2Sequencing Read Mapping

3 4Variant Calling Scientific Discovery

300 M
bases/min

Illumina HiSeq4000

2 M
bases/min

on average

(0.6%)

Bottlenecked in Mapping!!

Source: Prof. Onur Mutlu’s lecture slides

5

https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture3a-genomeanalysisintroduction-afterlecture.pdf

Joël Lindegger

Sequence-to-Sequence (S2S) Mapping Sequence-to-Graph (S2G) Mapping

Genome Sequence Analysis

6

Sequence-to-graph mapping results in notable quality improvements.

However, it is a more difficult computational problem,

with no prior hardware design.

❑ Mapping the reads to a reference genome (i.e., read mapping) is a

critical step in genome sequence analysis

Linear Reference: ACGTACGT

Read: ACGG

Alternative Sequence: ACGGACGT

Alternative Sequence: ACGTTACGT

Alternative Sequence: ACG‒ACGT

Graph-based Reference:

Read: ACGG

Joël Lindegger

SeGraM: First universal algorithm/hardware co-designed genomic

mapping accelerator that can effectively and efficiently support:

❑ Sequence-to-graph mapping

❑ Sequence-to-sequence mapping

❑ Both short and long reads

SeGraM: First Graph Mapping Accelerator

7

Our Goal:

Specialized, high-performance, scalable, and low-cost

algorithm/hardware co-design that alleviates bottlenecks in

multiple steps of sequence-to-graph mapping

Joël Lindegger

Use Cases & Key Results

8

(1) Sequence-to-Graph (S2G) Mapping

❑ 5.9×/106× speedup, 4.1×/3.0× less power than GraphAligner

for long and short reads, respectively (state-of-the-art SW)

❑ 3.9×/742× speedup, 4.4×/3.2× less power than vg

for long and short reads, respectively (state-of-the-art SW)

(2) Sequence-to-Graph (S2G) Alignment

❑ 41×–539× speedup over PaSGAL with AVX-512 support (state-of-the-art SW)

(3) Sequence-to-Sequence (S2S) Alignment

❑ 1.2×/4.8× higher throughput than GenASM and GACT of Darwin

for long reads (state-of-the-art HW)

❑ 1.3×/2.4× higher throughput than GenASM and SillaX of GenAX

for short reads (state-of-the-art HW)

Joël Lindegger

Outline
❑ Introduction

❑ Background
o Read Mapping

o Genome Graphs

o Sequence-to-Graph Mapping

❑ SeGraM: Universal Genomic Mapping Accelerator
o High-Level Overview

o MinSeed

o BitAlign

o Use Cases

❑ Evaluation

❑ Conclusion

9

Joël Lindegger 10

AACGTTAGCTATTCAGA
CAGGTATTAATAGCCGT
CAGATAGTAGCTAACGT
TAGCTATTCAGACAGGT
ATTAATAGCCGTCAGAT
AGTAGCTACAGGTATTA
ATAGCCGTCAGATAGTA
GCTACAGGTATTAATAG
CCGTCAGATAGTAGCTA

Reference Genome

Solving the Puzzle (S2S Mapping)

For a Human:
3 Billion Characters (3GB)

Determines e.g., Eye Color,
Shape of Face, Allergies, …

Joël Lindegger 11

Reference Genome Reads

Solving the Puzzle (S2S Mapping)

For a Human:
3 Billion Characters (3GB)

Determines e.g., Eye Color,
Shape of Face, Allergies, …

150 – 2,000,000 Characters Each

Origin Locations are Unknown

Joël Lindegger 12

Reference Genome Reads

Solving the Puzzle (S2S Mapping)

For a Human:
3 Billion Characters (3GB)

Determines e.g., Eye Color,
Shape of Face, Allergies, …

150 – 2,000,000 Characters Each

Origin Locations are Unknown

S2S (Sequence-to-Sequence) Mapping
Recovers the Origin Locations

According to 1 Reference Genome

Joël Lindegger

S2S Alignment/Mapping Accelerators

13

Joël Lindegger 14

Reference Genome Reads

Solving the Puzzle (S2S Mapping)

Variants

Joël Lindegger 15

Reference Genome Reads

Solving the Puzzle (S2S Mapping)

Some Reads Can Be Mapped due

to Sufficient Context

Some Reads Fail to Be Mapped

Because They are Too Different

from the Single Reference

Reference Bias!

Joël Lindegger

❑ Solution 1: Attempt to map to all known reference genomes one-by-one
o For N times slowdown for N reference genomes

o There could be unknown reference genomes (e.g., hybrids)

❑ Solution 2: Build a single graph-based reference that unifies all known
genetic variations
o Avoids redundant computation and data

o Captures some unknown reference genomes

16

Avoiding Reference Bias in Read Mapping

Joël Lindegger

Genome Graphs

Genome graphs:

❑ Combine the linear reference genome with the known genetic

variations in the entire population as a graph-based data structure

❑ Enable us to move away from aligning with a single linear reference

genome (reference bias) and more accurately express the genetic

diversity in a population

17

Sequence #1: ACGTACGT ACGTACGT

Joël Lindegger

Genome Graphs

Genome graphs:

❑ Combine the linear reference genome with the known genetic

variations in the entire population as a graph-based data structure

❑ Enable us to move away from aligning with a single linear reference

genome (reference bias) and more accurately express the genetic

diversity in a population

18

Sequence #1: ACGTACGT

Sequence #2: ACGGACGT

ACGTACGT

Joël Lindegger

Genome Graphs

Genome graphs:

❑ Combine the linear reference genome with the known genetic

variations in the entire population as a graph-based data structure

❑ Enable us to move away from aligning with a single linear reference

genome (reference bias) and more accurately express the genetic

diversity in a population

19

ACG ACGT

T

G

Sequence #1: ACGTACGT

Sequence #2: ACGGACGT

Joël Lindegger

Genome Graphs

Genome graphs:

❑ Combine the linear reference genome with the known genetic

variations in the entire population as a graph-based data structure

❑ Enable us to move away from aligning with a single linear reference

genome (reference bias) and more accurately express the genetic

diversity in a population

20

ACG ACGT

T

G

Sequence #1: ACGTACGT

Sequence #2: ACGGACGT

Sequence #3: ACGTTACGT

Joël Lindegger

Genome Graphs

Genome graphs:

❑ Combine the linear reference genome with the known genetic

variations in the entire population as a graph-based data structure

❑ Enable us to move away from aligning with a single linear reference

genome (reference bias) and more accurately express the genetic

diversity in a population

21

ACG ACGT

T

G

T

Sequence #1: ACGTACGT

Sequence #2: ACGGACGT

Sequence #3: ACGTTACGT

Joël Lindegger

Genome Graphs

Genome graphs:

❑ Combine the linear reference genome with the known genetic

variations in the entire population as a graph-based data structure

❑ Enable us to move away from aligning with a single linear reference

genome (reference bias) and more accurately express the genetic

diversity in a population

22

ACG ACGT

T

G

T

Sequence #1: ACGTACGT

Sequence #2: ACGGACGT

Sequence #3: ACGTTACGT

Sequence #4: ACGACGT

Joël Lindegger

Genome Graphs

Genome graphs:

❑ Combine the linear reference genome with the known genetic

variations in the entire population as a graph-based data structure

❑ Enable us to move away from aligning with a single linear reference

genome (reference bias) and more accurately express the genetic

diversity in a population

23

ACG ACGT

T

G

T

Sequence #1: ACGTACGT

Sequence #2: ACGGACGT

Sequence #3: ACGTTACGT

Sequence #4: ACGACGT

Joël Lindegger

Sequence-to-Graph Mapping Pipeline

24

Pre-Processing
Steps (Offline)

Seed-and-Extend
Steps (Online)

Indexing
(index the nodes of the graph)

Seeding
(query the index & find the seed matches)

Filtering/Chaining/Clustering
(filter out dissimilar query read and subgraph pairs)

S2G Alignment
(perform distance/score calculation & traceback)

Linear reference
genome

Known genetic
variations

Reads from
sequenced

genome

0.2

1

2

3

Genome Graph Construction
(construct the graph using a linear reference genome and variations)

0.1

Genome graph

Hash-table-based index (of graph nodes)

Candidate mapping locations (subgraphs)

Remaining candidate mapping locations (subgraphs)

Optimal alignment between read & subgraph

Joël Lindegger

Previous Lecture: GenASM and Scrooge

25

Joël Lindegger

S2S vs. S2G Alignment

26

Joël Lindegger

S2S vs. S2G Alignment

27

In contrast to S2S alignment,

S2G alignment must incorporate non-neighboring characters

as well whenever there is an edge (i.e., hop)

from the non-neighboring character to the current character

Joël Lindegger

Based on our analysis with GraphAligner and vg:

Observation 1: Alignment step is the bottleneck

Observation 2: Alignment suffers from high cache miss rates

Observation 3: Seeding suffers from the DRAM latency bottleneck

Observation 4: Baseline tools scale sublinearly

Observation 5: Existing S2S mapping accelerators are unsuitable

for the S2G mapping problem

Observation 6: Existing graph accelerators are unable to handle

S2G alignment

Analysis of State-of-the-Art Tools

28

SW

HW

Joël Lindegger

Outline
❑ Introduction

❑ Background
o Read Mapping

o Genome Graphs

o Sequence-to-Graph Mapping

❑ SeGraM: Universal Genomic Mapping Accelerator
o High-Level Overview

o MinSeed

o BitAlign

o Use Cases

❑ Evaluation

❑ Conclusion

29

Joël Lindegger

SW

HW

SeGraM: Universal Genomic Mapping Accelerator

❑ First universal genomic mapping accelerator that can support both

sequence-to-graph mapping and sequence-to-sequence mapping,

for both short and long reads

❑ First algorithm/hardware co-design for accelerating

sequence-to-graph mapping

❑We base SeGraM upon a minimizer-based seeding algorithm

❑We propose a novel bitvector-based alignment algorithm to perform

approximate string matching between a read and a graph-based

reference genome

❑We co-design both algorithms with high-performance, scalable,

and efficient hardware accelerators

30

Joël Lindegger

SeGraM Hardware Design

31

SeGraM Accelerator

MinSeed (MS)

Host
CPU

Main Memory (graph-based reference & index)

Find
Minimizers

BitAlign (BA)

Read
Scratchpad

Minimizer
Scratchpad

Filter
Frequencies

by Frequency

Seed
Scratchpad

Find
Candidate

Seed Regions

MinSeed (MS)

Find
Minimizers

Read
Scratchpad

Minimizer
Scratchpad

Filter
Minimizers

by Frequency

Seed
Scratchpad

Find
Candidate

Seed Regions

Input Scratchpad

Generate
Bitvectors

Perform
Traceback

Bitvector Scratchpad

Hop Queues

BitAlign (BA)

Input Scratchpad

Generate
Bitvectors

Perform
Traceback

Bitvector Scratchpad

Hop Queues

MinSeed: first hardware
accelerator for

Minimizer-based Seeding

BitAlign: first hardware
accelerator for (Bitvector-based)

sequence-to-graph Alignment

Joël Lindegger

Host
CPU

Main Memory (graph-based reference & index)Main Memory (graph-based reference & index)

SeGraM Hardware Design

32

SeGraM Accelerator

MinSeed (MS)

Host
CPU

Find
Minimizers

query
read

1

BitAlign (BA)

Read
Scratchpad

Minimizer
Scratchpad

Filter
Minimizers

by Frequency

Seed
Scratchpad

Find
Candidate

Seed Regions

Input Scratchpad

Generate
Bitvectors

Perform
Traceback

Bitvector Scratchpad

Hop Queues

query k-mers

minimizers

frequencies seed locations graph nodes

2

3

4

5

6

7

8
9

10

11

12 optimal alignment information

MinSeed: first hardware
accelerator for

Minimizer-based Seeding

BitAlign: first hardware
accelerator for (Bitvector-based)

sequence-to-graph Alignment

Joël Lindegger

Main Memory (High Bandwidth Memory)

Minimizer
Finder

Read
Scratchpad

(6 kB)

Minimizer
Scratchpad

(40 kB)

Minimizer
Filter

by
Frequency

(<?)

Seed
Scratchpad

(4 kB)

Candidate
Seed

Region
Calculator
(+/−/×)

MinSeed HW

33

❑ MinSeed = 3 computation modules + 3 scratchpads + memory interface

o Computation modules: Implemented with simple logic

o Scratchpads: 50kB in total; employ double buffering technique to

hide the latency of MinSeed

o High-Bandwidth Memory (HBM): Enables low-latency and

highly-parallel memory access

Main Memory (High Bandwidth Memory)

Minimizer
Finder

Read
Scratchpad

(6 kB)

Minimizer
Scratchpad

(40 kB)

Minimizer
Filter

by
Frequency

(<?)

Seed
Scratchpad

(4 kB)

Candidate
Seed

Region
Calculator
(+/−/×)

frequency
threshold
(INPUT)

error rate,
read length

(INPUT)

query read
(INPUT)

candidate
subgraph
(OUTPUT)

Joël Lindegger

BitAlign HW

34

❑ Linear cyclic systolic array-based accelerator

❑ Based on the GenASM hardware design*

Bitvector
Scratchpadx

PC

PEx

Bitvector
Scratchpadx+1

PC

PEx+1

R[d-1]

HopBits

PatternBitmask

R[d] R[d]

[*] D. Senol Cali et al. "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for
Genome Sequence Analysis” (MICRO’20)

https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf

Joël Lindegger

Previous Lecture: GenASM and Scrooge

35

Joël Lindegger

BitAlign HW

36

❑ Linear cyclic systolic array-based accelerator

❑ Based on the GenASM hardware design*

❑ Incorporates hop queue registers to feed the bitvectors of

non-neighboring characters/nodes (i.e., hops)

Bitvector
Scratchpadx

PC

PEx

Bitvector
Scratchpadx+1

PC

PEx+1

HopQueueRegisterx

R[d-1]

oldR[d] oldR[d-1]

HopBits

PatternBitmask

HopQueueRegisterx+1

R[d]

HopQueueRegisterx-1

oldR[d-1] oldR[d]

R[d]

[*] D. Senol Cali et al. "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for
Genome Sequence Analysis” (MICRO’20)

https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf

Joël Lindegger

SeGraM Module (1 x per HBM2E stack)SeGraM Module (1 x per HBM2E stack)

High Bandwidth Memory (HBM2E) Stack

Host

. . .

Overall System Design of SeGraM

37

. . .

High Bandwidth Memory (HBM2E) Stack

SeGraM
Acc.

SeGraM
Acc.

SeGraM
Acc.

SeGraM
Acc.

SeGraM
Acc.

. . .Host

MS

BA

MS

BA

MS

BA

MS

BA

MS

BA

X 4

CH0 CH1 CH2 CH6 CH7

Joël Lindegger

Use Cases of SeGraM

(1) Sequence-to-Graph

Mapping

(2) Sequence-to-Graph

Alignment

(3) Sequence-to-Sequence

Alignment

(4) Seeding

38

MS BA

MS or
Other BA

BA

MS

MS or
Other

BA or
Other

Joël Lindegger

Outline
❑ Introduction

❑ Background
o Read Mapping

o Genome Graphs

o Sequence-to-Graph Mapping

❑ SeGraM: Universal Genomic Mapping Accelerator
o High-Level Overview

o MinSeed

o BitAlign

o Use Cases

❑ Evaluation

❑ Conclusion

39

Joël Lindegger

Evaluation Methodology

❑ Performance, Area and Power Analysis:

o Synthesized SystemVerilog models of the MinSeed and BitAlign

accelerator datapaths

o Simulation- and spreadsheet-based performance modeling

❑ Baseline Comparison Points:

o GraphAligner, vg, and HGA for sequence-to-graph mapping

o PaSGAL for sequence-to-graph alignment

o Darwin, GenAx, and GenASM for sequence-to-sequence alignment

❑ Datasets:

o Graph-based reference: GRCh38 + 7 VCF files for HG001-007

o Simulated datasets for both short and long reads

40

Joël Lindegger

Key Results – Area & Power

41

❑ Based on our synthesis of MinSeed and BitAlign accelerator datapaths

using the Synopsys Design Compiler with a 28nm process (@ 1GHz):

Joël Lindegger

Key Results – SeGraM with Long Reads

42

SeGraM provides 5.9× and 3.9× throughput improvement

over GraphAligner and vg,

while reducing the power consumption by 4.1× and 4.4×

Joël Lindegger 43

Key Results – SeGraM with Short Reads

SeGraM provides 106× and 742× throughput improvement

over GraphAligner and vg,

while reducing the power consumption by 3.0× and 3.2×

Joël Lindegger 44

BitAlign provides 41×-539× speedup over PaSGAL

Key Results – BitAlign (S2G Alignment)

Joël Lindegger 45

Key Results – BitAlign (S2S Alignment)

❑ BitAlign can also be used for sequence-to-sequence alignment

o The cost of more functionality: extra hop queue registers

o We do not sacrifice any performance

❑ For long reads (over GACT of Darwin and GenASM):

o 4.8× and 1.2× throughput improvement,

o 2.7× and 7.5× higher power consumption, and

o 1.5× and 2.6× higher area overhead

❑ For short reads (over SillaX of GenAx and GenASM):

o 2.4× and 1.3× throughput improvement

Joël Lindegger

Outline
❑ Introduction

❑ Background
o Read Mapping

o Genome Graphs

o Sequence-to-Graph Mapping

❑ SeGraM: Universal Genomic Mapping Accelerator
o High-Level Overview

o MinSeed

o BitAlign

o Use Cases

❑ Evaluation

❑ Conclusion

46

Joël Lindegger

Additional Details in the Paper

❑ Details of the pre-processing steps of SeGraM

❑ Details of the MinSeed and BitAlign algorithms

❑ Details of the MinSeed and BitAlign hardware designs

❑ Bottleneck analysis of the existing tools

❑ Evaluation methodology details

(datasets, baselines, performance model)

❑ Additional results for the three evaluated use cases

❑ Sources of improvements in SeGraM

❑ Comparison of GenASM and SeGraM

47

Joël Lindegger

Conclusion
❑ SeGraM: First universal algorithm/hardware co-designed genomic

mapping accelerator that supports:

▪ Sequence-to-graph (S2G) & sequence-to-sequence (S2S) mapping

▪ Short & long reads

o MinSeed: First minimizer-based seeding accelerator

o BitAlign: First (bitvector-based) S2G alignment accelerator

❑ SeGraM supports multiple use cases:

o End-to-end S2G mapping

o S2G alignment

o S2S alignment

o Seeding

❑ SeGraM outperforms state-of-the-art software & hardware solutions

48

Joël Lindegger

SeGraM [ISCA 2022]

49

Damla Senol Cali, Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet

S. Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie S. Kim, Nika Mansouri

Ghiasi, Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed

Alser, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu

“SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and

Sequence-to-Sequence Mapping”

Proceedings of the 49th International Symposium on Computer Architecture (ISCA),

New York City, NY, June 2022.

https://people.inf.ethz.ch/omutlu/pub/SeGraM_genomic-sequence-mapping-universal-accelerator_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/SeGraM_genomic-sequence-mapping-universal-accelerator_isca22.pdf
https://iscaconf.org/isca2022/

Joël Lindegger

SeGraM – GitHub Page

50

https://github.com/CMU-SAFARI/SeGraM

https://github.com/CMU-SAFARI/SeGraM

Joël Lindegger

Previous Lecture: GenASM and Scrooge

51

P&S Genomics

Lecture 9: SeGraM

Joël Lindegger

ETH Zürich

Spring 2023

4 May 2023

Backup Slides
(SeGraM)

Joël Lindegger

Genome Sequence Analysis

54

❑ Maps reads collected from an
individual to a known linear
reference genome sequence

❑ Emphasizes the genetic variations
that are present in the single
reference genome

❑ Ignores other variations that are
not represented in the single linear
reference sequence

❑ Introduces reference bias

❑ Replaces the linear reference sequence
with a graph-based representation of
the reference genome (genome graph)

❑ Captures the genetic variations and
diversity across many individuals in a
population

❑ Results in notable quality improvements
in GSA

❑ More difficult computational problem

❑ No prior hardware design for graph-
based GSA

❑ Well studied with many available
tools and accelerators

Sequence-to-Sequence (S2S) Mapping Sequence-to-Graph (S2G) Mapping

❑ Mapping the reads to a reference genome (i.e., read mapping) is a critical

step in genome sequence analysis (GSA)

Joël Lindegger

SeGraM – Graph Structure

55

Joël Lindegger

SeGraM – Index Structure

56

Joël Lindegger

SeGraM – Selection of #Buckets

57

Joël Lindegger

Minimizers

58

Joël Lindegger

MinSeed – Region Calculation

59

Joël Lindegger

BitAlign Algorithm

60

Joël Lindegger

BitAlign – HopBits

61

Joël Lindegger

BitAlign – Hop Length Selection

62

Joël Lindegger

Use Cases of SeGraM
(1) End-to-End Sequence-to-Graph Mapping

o The whole SeGraM design (MinSeed + BitAlign) should be employed

o We can use SeGraM to perform mapping with both short and long reads

(2) Sequence-to-Graph Alignment
o BitAlign can be used as a standalone sequence-to-graph aligner without the need

of an initial seeding tool/accelerator (e.g., MinSeed)

o BitAlign is orthogonal to and can be coupled with any seeding (or filtering)

tool/accelerator

(3) Sequence-to-Sequence Alignment
o BitAlign can also be used for sequence-to-sequence alignment, as it is a special

and simpler variant of sequence-to-graph alignment

(4) Seeding
o MinSeed can be used as a standalone seeding accelerator for both graph-based

mapping and traditional linear mapping

o MinSeed is orthogonal to and can be coupled with any alignment tool/accelerator

63

Joël Lindegger

Sources of Improvement
❑ Co-design approach for both seeding and alignment:

o Efficient and hardware-friendly algorithms for seeding and for

alignment

o Eliminating the data transfer bottleneck between the seeding and

alignment steps of the genome sequence analysis pipeline, by

placing their individual accelerators (MinSeed and BitAlign)

adjacent to each other

o Pipelining of the two accelerators within a SeGraM accelerator,

which allows us to completely hide the latency of MinSeed

❑Overcoming the high cache miss rates observed from the baseline

tools by carefully designing and sizing the on-chip scratchpads and

the hop queue registers and matching the rate of computation for

the logic units with memory bandwidth and memory capacity

64

Joël Lindegger

Sources of Improvement (cont’d.)
❑Addressing the DRAM latency bottleneck by taking advantage of

the natural channel subdivision exposed by HBM and eliminating any

inter-accelerator interference-related latency in the memory system

❑ Scaling linearly across three dimensions:

o Within a single BitAlign accelerator, by incorporating processing

elements (i.e., iteration-level parallelism),

o Executing multiple seeds in parallel by using pipelined execution

with the help of our double buffering approach (i.e., seed-level

parallelism), and

o Processing multiple reads concurrently without introducing inter-

accelerator memory interference with the help of multiple HBM

stacks that each contain the same content (i.e., read-level

parallelism)

65

Backup Slides
(GenASM)

Joël Lindegger

❑ Sequenced genome may not exactly map to the reference genome due

to genetic variations and sequencing errors

❑ Approximate string matching (ASM):

o Detect the differences and similarities between two sequences

o In genomics, ASM is required to:

▪ Find the minimum edit distance (i.e., total number of edits)

▪ Find the optimal alignment with a traceback step

◦ Sequence of matches, substitutions, insertions and deletions,

along with their positions

o Usually implemented as a dynamic programming (DP) based algorithm

Approximate String Matching

67

Reference:

Read:

insertionsubstitutiondeletion

A A A AT G T T TA G T G C TA C T G

A A AT G T T TA C T G C TA C T T G

A A A AT G T T TA G T G C TA C T G

A A A AT G T T TA C T G C TA C T T G

A A A AT G T T TA G T G C TA C T G

A A A AT G T T TA G T G C TA C T T G

A A A AT G T T TA G T G C TA C T T G

A A A AT G T T TA G T G C TA C T T GC

A

T

G

Joël Lindegger

Bitap Algorithm
❑ Bitap1,2 performs ASM with fast and simple bitwise operations

o Amenable to efficient hardware acceleration

o Computes the minimum edit distance between a text (e.g., reference

genome) and a pattern (e.g., read) with a maximum of k errors

❑ Step 1: Pre-processing (per pattern)

o Generate a pattern bitmask (PM) for each character in the alphabet

(A, C, G, T)

o Each PM indicates if character exists at each position of the pattern

❑ Step 2: Searching (Edit Distance Calculation)

o Compare all characters of the text with the pattern by using:

▪ Pattern bitmasks

▪ Status bitvectors that hold the partial matches

▪ Bitwise operations
[1] R. A. Baeza-Yates and G. H. Gonnet. "A New Approach to Text Searching." CACM, 1992.

[2] S. Wu and U. Manber. "Fast Text Searching: Allowing Errors." CACM, 1992.

68

Joël Lindegger

Bitap Algorithm (cont’d.)

Large number of
iterations

❑ Step 2: Edit Distance Calculation

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion = oldR[d-1]

substitution = oldR[d-1] << 1

insertion = R[d-1] << 1

match = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match.

If 0, match with d many errors.

69

Joël Lindegger

Bitap Algorithm (cont’d.)

Data dependency
between iterations

(i.e., no
parallelization)

❑ Step 2: Edit Distance Calculation

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion = oldR[d-1]

substitution = oldR[d-1] << 1

insertion = R[d-1] << 1

match = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match.

If 0, match with d many errors.

70

Joël Lindegger

Bitap Algorithm (cont’d.)

❑ Step 2: Edit Distance Calculation

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion = oldR[d-1]

substitution = oldR[d-1] << 1

insertion = R[d-1] << 1

match = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match.

If 0, match with d many errors.

71

Does not store and process
these intermediate bitvectors
to find the optimal alignment

(i.e., no traceback)

Joël Lindegger

Example for the Bitap Algorithm

72

Joël Lindegger

Hardware

Algorithm

Limitations of Bitap

1) Data Dependency Between Iterations:

o Two-level data dependency forces the consecutive iterations to take

place sequentially

2) No Support for Traceback:

o Bitap does not include any support for optimal alignment identification

3) No Support for Long Reads:

o Each bitvector has a length equal to the length of the pattern

o Bitwise operations are performed on these bitvectors

4) Limited Compute Parallelism:

o Text-level parallelism

o Limited by the number of compute units in existing systems

5) Limited Memory Bandwidth:

o High memory bandwidth required to read and write the computed

bitvectors to memory

73

Joël Lindegger

GenASM: ASM Framework for GSA

❑ GenASM: First ASM acceleration framework for GSA
o Approximate string matching (ASM) acceleration framework based

on the Bitap algorithm

❑We overcome the five limitations that hinder Bitap’s use in GSA:

o Modified and extended ASM algorithm
▪ Highly-parallel Bitap with long read support
▪ Novel bitvector-based algorithm to perform traceback

o Specialized, low-power and area-efficient hardware for both
modified Bitap and novel traceback algorithms

Our Goal:

Accelerate approximate string matching

by designing a fast and flexible framework,

which can accelerate multiple steps of genome sequence analysis

74

SW

HW

Joël Lindegger

GenASM Algorithm

❑ GenASM-DC Algorithm:

o Modified Bitap for Distance Calculation

o Extended for efficient long read support

o Besides bit-parallelism that Bitap has, extended for parallelism:

▪ Loop unrolling

▪ Text-level parallelism

❑ GenASM-TB Algorithm:

o Novel Bitap-compatible TraceBack algorithm

o Walks through the intermediate bitvectors (match, deletion,

substitution, insertion) generated by GenASM-DC

o Follows a divide-and-conquer approach to decrease the

memory footprint

75

Joël Lindegger

Loop Unrolling in GenASM-DC

76

Cycle#
Thread1

R0/4
Thread2

R1/5
Thread3

R2/6
Thread4

R3/7

#1 T0-R0 − − −

#2 T1-R0 T0-R1 − −

#3 T2-R0 T1-R1 T0-R2 −

#4 T3-R0 T2-R1 T1-R2 T0-R3

#5 T0-R4 T3-R1 T2-R2 T1-R3

#6 T1-R4 T0-R5 T3-R2 T2-R3

#7 T2-R4 T1-R5 T0-R6 T3-R3

#8 T3-R4 T2-R5 T1-R6 T0-R7

#9 − T3-R5 T2-R6 T1-R7

#10 − − T3-R6 T2-R7

#11 − − − T3-R7

target cell (Rd)
cells target cell depends on (oldRd, Rd-1, oldRd-1)

data written to memory

data read from memory

Cycle#
Thread1

R0/1/2/..

#1 T0-R0
… …

#8 T0-R7

#9 T1-R0

… …

#16 T1-R7

#17 T2-R0

… …

#24 T2-R7

#25 T3-R0
… …

#32 T3-R7

Joël Lindegger

Traceback Example with GenASM-TB

77

Deletion Example (Text Location=0)

Text[0]: C Text[1]: G Text[2]: T Text[3]: G Text[4]: A

Match(C) Del(–) Match(T) Match(G) Match(A)
<3,0,1> <2,1,1> <2,2,0> <1,3,0> <0,4,0>

R0- :
R1-M : 0111

R0- :
R1-D : 1011

R0-M : 1011
R1- :

R0-M : 1101
R1- :

R0-M : 1110
R1- :

Substitution Example (Text Location=1)

Text[1]: G Text[2]: T Text[3]: G Text[4]: A

Subs(C) Match(T) Match(G) Match(A)
<3,1,1> <2,2,0> <1,3,0> <0,4,0>

R0- :
R1-S : 0110

R0-M : 1011
R1- :

R0-M : 1101
R1- :

R0-M : 1110
R1- :

Insertion Example (Text Location=2)

Text[–] Text[2]: T Text[3]: G Text[4]: A

Ins(C) Match(T) Match(G) Match(A)
<3,2,1> <2,2,0> <1,3,0> <0,4,0>

R0- :
R1-I : 0110

R0-M : 1011
R1- :

R0-M : 1101
R1- :

R0-M : 1110
R1- :

Joël Lindegger

GenASM-DC GenASM-TB

GenASM Hardware Design

78

GenASM-DC:
generates bitvectors

and performs edit
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the
optimal alignment

Host
CPU

TB-SRAM1

TB-SRAM2

TB-SRAMn

GenASM-TB
Accelerator

GenASM-DC
Accelerator

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Main
Memory

DC-SRAMDC-SRAM

GenASM-DC GenASM-TB

TB-SRAM1

TB-SRAM2

TB-SRAMn

.

.

.

Joël Lindegger

GenASM Hardware Design

79

GenASM-DC GenASM-TB

Host
CPU

TB-SRAM1

TB-SRAM2

TB-SRAMn

GenASM-TB
Accelerator

GenASM-DC
Accelerator

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Main
Memory

DC-SRAMDC-SRAM

GenASM-DC GenASM-TB

TB-SRAM1

TB-SRAM2

TB-SRAMn

.

.

.

reference
& query

locations

Write
bitvectors

reference
text

& query
pattern

sub-text &
sub-pattern

Read
bitvectors

Generate
bitvectors

2

1

3

4

5 6

GenASM-DC:
generates bitvectors

and performs edit
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the
optimal alignment

Read
bitvectors

6
Write

bitvectors

5

Generate
bitvectors 4

sub-text &
sub-pattern3

reference
text

& query
pattern

2

reference
& query

locations

1

Find the
traceback output

7

Joël Lindegger

GenASM Hardware Design

80

GenASM-DC GenASM-TB

Host
CPU

TB-SRAM1

TB-SRAM2

TB-SRAMn

GenASM-TB
Accelerator

GenASM-DC
Accelerator

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Main
Memory

DC-SRAMDC-SRAM

GenASM-DC GenASM-TB

TB-SRAM1

TB-SRAM2

TB-SRAMn

.

.

.

reference
& query

locations

Write
bitvectors

reference
text

& query
pattern

sub-text &
sub-pattern

Read
bitvectors

Find the
traceback output

Generate
bitvectors

2

1

3

4

5 6

7

GenASM-DC:
generates bitvectors

and performs edit
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the
optimal alignment

Our specialized compute units and on-chip SRAMs help us to:

→ Match the rate of computation with memory capacity and bandwidth

→ Achieve high performance and power efficiency

→ Scale linearly in performance with

the number of parallel compute units that we add to the system

Joël Lindegger

GenASM-DC: Hardware Design
❑ Linear cyclic systolic array based accelerator

o Designed to maximize parallelism and minimize memory bandwidth and
memory footprint

81

Processing Block (PB)

Processing Core (PC)

OldR[d-1] <<

<<

<<

R[d-1]

OldR[d]

PatternMask Match

R[d]

Substitution

Insertion

Deletion

OldR
out

PM
out

PM
out

OldR in

PM in

PC

PE1

PC

PE2

PC

PEp-1

PC

PEp

OldR
out

PC

PE

DC-SRAM

TB-SRAMp-1

Intermediate Bitvectors

TB-SRAMpTB-SRAM2TB-SRAM1

Joël Lindegger

Bitwise
Comparisons

CIGAR string

Last CIGAR

<<

match

CIGAR
out

1

2
.
.

64

192
insertion

deletion

subs

64

64

64

64

1

2

Next Rd
Addr

Compute

3

GenASM-TB

GenASM-TB: Hardware Design

❑ Very simple logic:

❶Reads the bitvectors from one of the TB-SRAMs using the computed
address
❷Performs the required bitwise comparisons to find the traceback output
for the current position
❸Computes the next TB-SRAM address to read the new set of bitvectors

82

Bitwise
Comparisons

CIGAR string

Last CIGAR

<<

match

CIGAR
out

1

2
.
.

64

192
insertion

deletion

subs

64

64

64

64

to main
memory

1

2

Next Rd
Addr

Compute

3

1.5KB
TB-SRAM1

1.5KB
TB-SRAM2

1.5KB
TB-SRAM64

1

2

3

Joël Lindegger

Use Cases of GenASM

(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate

reference regions

(2) Pre-Alignment Filtering for Short Reads

o Quickly identify and filter out the unlikely candidate reference

regions for each read

(3) Edit Distance Calculation

o Measure the similarity or distance between two sequences

❑ We also discuss other possible use cases of GenASM in our paper:

o Read-to-read overlap finding, hash-table based indexing, whole

genome alignment, generic text search

83

Joël Lindegger

Evaluation Methodology

❑We evaluate GenASM using:

o Synthesized SystemVerilog models of the GenASM-DC and

GenASM-TB accelerator datapaths

o Detailed simulation-based performance modeling

❑ 16GB HMC-like 3D-stacked DRAM architecture

o 32 vaults

o 256GB/s of internal bandwidth, clock frequency of 1.25GHz

o In order to achieve high parallelism and low power-consumption

o Within each vault, the logic layer contains a GenASM-DC

accelerator, its associated DC-SRAM, a GenASM-TB accelerator,

and TB-SRAMs.

84

Joël Lindegger

Evaluation Methodology (cont’d.)

85

SW Baselines HW Baselines

Read Alignment
Minimap21

BWA-MEM2

GACT (Darwin)3

SillaX (GenAx)4

Pre-Alignment Filtering – Shouji5

Edit Distance Calculation Edlib6 ASAP7

[1] H. Li. "Minimap2: Pairwise Alignment for Nucleotide Sequences." In Bioinformatics, 2018.
[2] H. Li. "Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM." In arXiv, 2013.

[3] Y. Turakhia et al. "Darwin: A genomics co-processor provides up to 15,000 x acceleration on long read assembly." In ASPLOS, 2018.
[4] D. Fujiki et al. "GenAx: A genome sequencing accelerator." In ISCA, 2018.

[5] M. Alser. "Shouji: A fast and efficient pre-alignment filter for sequence alignment." In Bioinformatics, 2019.
[6] M. Šošić et al. "Edlib: A C/C++ library for fast, exact sequence alignment using edit distance." In Bioinformatics, 2017.

[7] S.S. Banerjee et al. ”ASAP: Accelerated short-read alignment on programmable hardware." In TC, 2018.

Joël Lindegger

Evaluation Methodology (cont’d.)

❑ For Use Case 1: Read Alignment, we compare GenASM with:

o Minimap2 and BWA-MEM (state-of-the-art SW)

▪ Running on Intel® Xeon® Gold 6126 CPU (12-core) operating

@2.60GHz with 64GB DDR4 memory

▪ Using two simulated datasets:

◦ Long ONT and PacBio reads: 10Kbp reads, 10-15% error rate

◦ Short Illumina reads: 100-250bp reads, 5% error rate

o GACT of Darwin and SillaX of GenAx (state-of-the-art HW)

▪ Open-source RTL for GACT

▪ Data reported by the original work for SillaX

▪ GACT is best for long reads, SillaX is best for short reads

86

Joël Lindegger

Evaluation Methodology (cont’d.)
❑ For Use Case 2: Pre-Alignment Filtering, we compare GenASM with:

o Shouji (state-of-the-art HW – FPGA-based filter)

▪ Using two datasets provided as test cases:

• 100bp reference-read pairs with an edit distance threshold of 5

• 250bp reference-read pairs with an edit distance threshold of 15

❑ For Use Case 3: Edit Distance Calculation, we compare GenASM with:

o Edlib (state-of-the-art SW)

▪ Using two 100Kbp and 1Mbp sequences with similarity ranging

between 60%-99%

o ASAP (state-of-the-art HW – FPGA-based accelerator)

▪ Using data reported by the original work

87

Joël Lindegger

Key Results – Area and Power
❑ Based on our synthesis of GenASM-DC and GenASM-TB accelerator

datapaths using the Synopsys Design Compiler with a 28nm process:

o Both GenASM-DC and GenASM-TB operate @ 1GHz

88

Joël Lindegger

Key Results – Area and Power
❑ Based on our synthesis of GenASM-DC and GenASM-TB accelerator

datapaths using the Synopsys Design Compiler with a 28nm process:

o Both GenASM-DC and GenASM-TB operate @ 1GHz

89

GenASM has low area and power overheads

Joël Lindegger

Key Results – Use Case 1

(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate

reference regions

(2) Pre-Alignment Filtering for Short Reads

oQuickly identify and filter out the unlikely candidate

reference regions for each read

(3) Edit Distance Calculation

oMeasure the similarity or distance between two sequences

90

Joël Lindegger

Key Results – Use Case 1 (Long Reads)

91

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

PacBio - 10% PacBio - 15% ONT - 10% ONT - 15% Average

T
h

ro
u

g
h

p
u

t
(r

ea
d

s/
se

c)

BWA-MEM (12-thread) GenASM (w/ BWA-MEM)

Minimap2 (12-thread) GenASM (w/ Minimap2)

GenASM achieves 648× and 116× speedup over

12-thread runs of BWA-MEM and Minimap2,

while reducing power consumption by 34× and 37×

648×

116×

SW

Joël Lindegger

Key Results – Use Case 1 (Long Reads)

92

1.E+00

1.E+02

1.E+04

1.E+06

1Kbp 2Kbp 3Kbp 4Kbp 5Kbp 6Kbp 7Kbp 8Kbp 9Kbp 10Kbp Average

T
h

ro
u

g
h

p
u

t
(r

ea
d

s/
se

c)

GACT (Darwin) GenASM

GenASM provides 3.9× better throughput,

6.6× the throughput per unit area, and

10.5× the throughput per unit power,

compared to GACT of Darwin

3.9×

HW

Joël Lindegger

1E+00
1E+01
1E+02
1E+03
1E+04
1E+05
1E+06
1E+07
1E+08

Illumina-100bp Illumina-150bp Illumina-250bp Average

T
h

ro
u

g
h

p
u

t
(r

ea
d

s/
se

c)

BWA-MEM (12-thread) GenASM (w/ BWA-MEM)

Minimap2 (12-thread) GenASM (w/ Minimap2)

Key Results – Use Case 1 (Short Reads)

93

GenASM achieves 111× and 158× speedup over

12-thread runs of BWA-MEM and Minimap2,

while reducing power consumption by 33× and 31×

111×
158×

GenASM provides 1.9× better throughput and

uses 63% less logic area and 82% less logic power,

compared to SillaX of GenAx

HW

SW

Joël Lindegger

Key Results – Use Case 2

94

(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate

reference regions

(2) Pre-Alignment Filtering for Short Reads

oQuickly identify and filter out the unlikely candidate

reference regions for each read

(3) Edit Distance Calculation

oMeasure the similarity or distance between two sequences

Joël Lindegger

Key Results – Use Case 2
❑ Compared to Shouji:

o 3.7× speedup

o 1.7× less power consumption

o False accept rate of 0.02% for GenASM vs. 4% for Shouji

o False reject rate of 0% for both GenASM and Shouji

95

GenASM is more efficient in terms of

both speed and power consumption,

while significantly improving the accuracy

of pre-alignment filtering

HW

Joël Lindegger

Key Results – Use Case 3

96

(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate

reference regions

(2) Pre-Alignment Filtering for Short Reads

oQuickly identify and filter out the unlikely candidate

reference regions for each read

(3) Edit Distance Calculation

oMeasure the similarity or distance between two sequences

Joël Lindegger

1.00E+00

1.00E+02

1.00E+04

1.00E+06

1.00E+08

99% 97% 94% 90% 80% 70% 60%

E
x

e
cu

ti
o

n
 t

im
e

(µ
s)

Similarity between two sequences

Edlib (100 Kbp) GenASM (100 Kbp) Edlib (1 Mbp) GenASM (1 Mbp)

Key Results – Use Case 3

97

GenASM provides 146 – 1458× and 627 – 12501× speedup,

while reducing power consumption by 548× and 582×

for 100Kbp and 1Mbp sequences, respectively, compared to Edlib

GenASM provides 9.3 – 400× speedup over ASAP,

while consuming 67× less power

146×
1458×

627×
12501×

HW

SW

Joël Lindegger

Key Results – Summary

98

(1) Read Alignment

❑ 116× speedup, 37× less power than Minimap2 (state-of-the-art SW)

❑ 111× speedup, 33× less power than BWA-MEM (state-of-the-art SW)

❑ 3.9× better throughput, 2.7× less power than Darwin (state-of-the-art HW)

❑ 1.9× better throughput, 82% less logic power than GenAx (state-of-the-art HW)

(2) Pre-Alignment Filtering

❑ 3.7× speedup, 1.7× less power than Shouji (state-of-the-art HW)

(3) Edit Distance Calculation

❑ 22–12501× speedup, 548–582× less power than Edlib (state-of-the-art SW)

❑ 9.3–400× speedup, 67× less power than ASAP (state-of-the-art HW)

Joël Lindegger

Additional Details in the Paper

❑ Details of the GenASM-DC and GenASM-TB algorithms

❑ Big-O analysis of the algorithms

❑ Detailed explanation of evaluated use cases

❑ Evaluation methodology details

(datasets, baselines, performance model)

❑ Additional results for the three evaluated use cases

❑ Sources of improvements in GenASM

(algorithm-level, hardware-level, technology-level)

❑ Discussion of four other potential use cases of GenASM

99

Joël Lindegger

Summary of GenASM
❑ Problem:

o Genome sequence analysis is bottlenecked by the computational power and

memory bandwidth limitations of existing systems

o This bottleneck is particularly an issue for approximate string matching

❑ Key Contributions:

o GenASM: An approximate string matching (ASM) acceleration framework to

accelerate multiple steps of genome sequence analysis

▪ First to enhance and accelerate Bitap for ASM with genomic sequences

▪ Co-design of our modified scalable and memory-efficient algorithms with

low-power and area-efficient hardware accelerators

▪ Evaluation of three different use cases: read alignment, pre-alignment

filtering, edit distance calculation

❑ Key Results: GenASM is significantly more efficient for all the three use cases

(in terms of throughput and throughput per unit power) than state-of-the-art

software and hardware baselines

100

Joël Lindegger

GenASM [MICRO 2020]

101

Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian,

Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna,

Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan,

Saugata Ghose, and Onur Mutlu,

"GenASM: A High-Performance, Low-Power Approximate String Matching

Acceleration Framework for Genome Sequence Analysis”

Proceedings of the 53rd International Symposium on Microarchitecture (MICRO),

Virtual, October 2020.

https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/

Joël Lindegger

GenASM – GitHub Page

102

https://github.com/CMU-SAFARI/GenASM

https://github.com/CMU-SAFARI/GenASM

Backup Slides
(Sequencing)

Joël Lindegger

Genome Sequencing

104

Sample Collection

Preparation

Sequencing

Genome Sequence
Analysis

Large DNA
molecule

Chopped DNA
fragments

Sequenced
reads

ACGTACCCCGT

GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT

ACGACGTAGCT

AAAAAAAAAA

ACGAGCGGGT

Joël Lindegger

Sequencing Technologies

105

Short reads: a few hundred base pairs and error rate of ∼0.1%

Long reads: thousands to millions of base pairs and error rate of 5–10%

Oxford Nanopore
(ONT)

PacBio
Illumina

Joël Lindegger

Current State of Sequencing (cont’d.)

*From NIH (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)

106

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

Joël Lindegger

Current State of Sequencing (cont’d.)

*From NIH (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)

107

Computation is a bottleneck!

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

Joël Lindegger

Read Mapping, method of aligning the
reads against the reference genome in

order to detect matches and variations.

ACGTACCCCGT

GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT ACGACGTAGCT

AAAAAAAAAAACGAGCGGGT Reads

De novo Assembly, method of
merging the reads in order to construct

the original sequence.

Reference
Genome

Original
Sequence

Genome Sequence Analysis

108

Reads Mapped Reads Reads Assembled Reads

Joël Lindegger

Read Mapping Pipeline

109

Indexing
(Pre-processing step to generate index of reference)

Seeding
(Query the index)

Pre-Alignment Filtering
(Filter out dissimilar sequences)

Read Alignment
(Perform distance/score calculation & traceback)

Reference
genome

Hash-table
based index

Potential mapping
locations

Optimal
alignment

Remaining
potential mapping
locations

Reads

Reference
segment

Query read

Joël Lindegger

Genome Assembly Pipeline Using Long Reads

Basecalling
(Translates signal data into bases: A,C,G,T)

Read-to-Read Overlap Finding
(Finds pairwise read alignments for each pair of read)

Assembly
(Traverses the overlap graph & constructs the draft assembly)

Read Mapping
(Maps the reads to the draft assembly)

Raw signal
data

Assembly

DNA reads

Overlaps

Draft assembly

Improved
assembly

Polishing
(Polishes the draft assembly & increases the accuracy)

Mappings of
reads against
draft assembly

❑ With the emergence of long read sequencing technologies, de novo assembly

becomes a promising way of constructing the original genome.

110

Joël Lindegger

Our Contributions

❑ Analyze the tools in multiple dimensions: accuracy,

performance, memory usage, and scalability

❑ Reveal new bottlenecks and trade-offs

❑ First study on bottleneck analysis of nanopore sequence

analysis pipeline on real machines

❑ Provide guidelines for practitioners

❑ Provide guidelines for tool developers

111

Joël Lindegger

Key Findings
❑ Laptops are becoming a popular platform for running genome assembly

tools, as the portability of a laptop makes it a good fit for in-field analysis

o Greater memory constraints
o Lower computational power
o Limited battery life

❑ Memory usage is an important factor that greatly affects the performance
and the usability of the tool

o Data structure choices that increase the memory requirements
o Algorithms that are not cache-efficient
o Not keeping memory usage in check with the number of threads

❑ Scalability of the tool with the number of cores is an important requirement.
However, parallelizing the tool can increase the memory usage

o Not dividing the input data into batches
o Not limiting the memory usage of each thread
o Dividing the dataset instead of the computation between simultaneous threads

112

Joël Lindegger

Key Findings
❑ Laptops are becoming a popular platform for running genome assembly

tools, as the portability of a laptop makes it a good fit for in-field analysis

o Greater memory constraints,
o Lower computational power
o Limited battery life

❑ Memory usage is an important factor that greatly affects the performance
and the usability of the tool

o Data structure choices that can minimize the memory requirements
o Cache-efficient algorithms
o Keeping memory usage in check with the number of threads

❑ Scalability of the tool with the number of cores is an important requirement.
However, parallelizing the tool can increase the memory usage.

o Dividing the input data into batches
o Limiting the memory usage of each thread
o Dividing the computation instead of the dataset between simultaneous threads

113

Goal 1:
High-performance and low-power

Goal 2:
Memory-efficient

Goal 3:
Scalable/highly-parallel

Joël Lindegger

Nanopore Sequencing & Tools

114

Damla Senol Cali, Jeremie S. Kim, Saugata Ghose, Can
Alkan, and Onur Mutlu. "Nanopore Sequencing
Technology and Tools for Genome Assembly:
Computational Analysis of the Current State, Bottlenecks
and Future Directions." Briefings in Bioinformatics (2018).

BiB Version arXiv Version

	Slide 1: P&S Genomics Lecture 9: SeGraM
	Slide 2: Previous Lecture: GenASM and Scrooge
	Slide 3: SeGraM A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping
	Slide 4: Genome Sequencing
	Slide 5
	Slide 6: Genome Sequence Analysis
	Slide 7: SeGraM: First Graph Mapping Accelerator
	Slide 8: Use Cases & Key Results
	Slide 9: Outline
	Slide 10: Solving the Puzzle (S2S Mapping)
	Slide 11: Solving the Puzzle (S2S Mapping)
	Slide 12: Solving the Puzzle (S2S Mapping)
	Slide 13: S2S Alignment/Mapping Accelerators
	Slide 14: Solving the Puzzle (S2S Mapping)
	Slide 15: Solving the Puzzle (S2S Mapping)
	Slide 16: Avoiding Reference Bias in Read Mapping
	Slide 17: Genome Graphs
	Slide 18: Genome Graphs
	Slide 19: Genome Graphs
	Slide 20: Genome Graphs
	Slide 21: Genome Graphs
	Slide 22: Genome Graphs
	Slide 23: Genome Graphs
	Slide 24: Sequence-to-Graph Mapping Pipeline
	Slide 25: Previous Lecture: GenASM and Scrooge
	Slide 26: S2S vs. S2G Alignment
	Slide 27: S2S vs. S2G Alignment
	Slide 28: Analysis of State-of-the-Art Tools
	Slide 29: Outline
	Slide 30: SeGraM: Universal Genomic Mapping Accelerator
	Slide 31: SeGraM Hardware Design
	Slide 32: SeGraM Hardware Design
	Slide 33: MinSeed HW
	Slide 34: BitAlign HW
	Slide 35: Previous Lecture: GenASM and Scrooge
	Slide 36: BitAlign HW
	Slide 37: Overall System Design of SeGraM
	Slide 38: Use Cases of SeGraM
	Slide 39: Outline
	Slide 40: Evaluation Methodology
	Slide 41: Key Results – Area & Power
	Slide 42: Key Results – SeGraM with Long Reads
	Slide 43: Key Results – SeGraM with Short Reads
	Slide 44: Key Results – BitAlign (S2G Alignment)
	Slide 45: Key Results – BitAlign (S2S Alignment)
	Slide 46: Outline
	Slide 47: Additional Details in the Paper
	Slide 48: Conclusion
	Slide 49: SeGraM [ISCA 2022]
	Slide 50: SeGraM – GitHub Page
	Slide 51: Previous Lecture: GenASM and Scrooge
	Slide 52: P&S Genomics Lecture 9: SeGraM
	Slide 53: Backup Slides (SeGraM)
	Slide 54: Genome Sequence Analysis
	Slide 55: SeGraM – Graph Structure
	Slide 56: SeGraM – Index Structure
	Slide 57: SeGraM – Selection of #Buckets
	Slide 58: Minimizers
	Slide 59: MinSeed – Region Calculation
	Slide 60: BitAlign Algorithm
	Slide 61: BitAlign – HopBits
	Slide 62: BitAlign – Hop Length Selection
	Slide 63: Use Cases of SeGraM
	Slide 64: Sources of Improvement
	Slide 65: Sources of Improvement (cont’d.)
	Slide 66: Backup Slides (GenASM)
	Slide 67: Approximate String Matching
	Slide 68: Bitap Algorithm
	Slide 69: Bitap Algorithm (cont’d.)
	Slide 70: Bitap Algorithm (cont’d.)
	Slide 71: Bitap Algorithm (cont’d.)
	Slide 72: Example for the Bitap Algorithm
	Slide 73: Limitations of Bitap
	Slide 74: GenASM: ASM Framework for GSA
	Slide 75: GenASM Algorithm
	Slide 76: Loop Unrolling in GenASM-DC
	Slide 77: Traceback Example with GenASM-TB
	Slide 78: GenASM Hardware Design
	Slide 79: GenASM Hardware Design
	Slide 80: GenASM Hardware Design
	Slide 81: GenASM-DC: Hardware Design
	Slide 82: GenASM-TB: Hardware Design
	Slide 83: Use Cases of GenASM
	Slide 84: Evaluation Methodology
	Slide 85: Evaluation Methodology (cont’d.)
	Slide 86: Evaluation Methodology (cont’d.)
	Slide 87: Evaluation Methodology (cont’d.)
	Slide 88: Key Results – Area and Power
	Slide 89: Key Results – Area and Power
	Slide 90: Key Results – Use Case 1
	Slide 91: Key Results – Use Case 1 (Long Reads)
	Slide 92: Key Results – Use Case 1 (Long Reads)
	Slide 93: Key Results – Use Case 1 (Short Reads)
	Slide 94: Key Results – Use Case 2
	Slide 95: Key Results – Use Case 2
	Slide 96: Key Results – Use Case 3
	Slide 97: Key Results – Use Case 3
	Slide 98: Key Results – Summary
	Slide 99: Additional Details in the Paper
	Slide 100: Summary of GenASM
	Slide 101: GenASM [MICRO 2020]
	Slide 102: GenASM – GitHub Page
	Slide 103: Backup Slides (Sequencing)
	Slide 104: Genome Sequencing
	Slide 105: Sequencing Technologies
	Slide 106: Current State of Sequencing (cont’d.)
	Slide 107: Current State of Sequencing (cont’d.)
	Slide 108: Genome Sequence Analysis
	Slide 109: Read Mapping Pipeline
	Slide 110: Genome Assembly Pipeline Using Long Reads
	Slide 111: Our Contributions
	Slide 112: Key Findings
	Slide 113: Key Findings
	Slide 114: Nanopore Sequencing & Tools

