P&S Modern SSDs

Basics of NAND Flash-Based SSDs

Dr. Mohammad Sadrosadati
Prof. Onur Mutlu

ETH Zürich
Spring 2024
26 March 2024
Today’s Agenda

- SSD Organization & Request Handling
- NAND Flash Organization
- NAND Flash Operations
A modern SSD is a complicated system that consists of multiple cores, HW controllers, DRAM, and NAND flash memory packages.
Another Overview

Host Interface Layer (HIL)

Flash Translation Layer (FTL)
- Data Cache Management
- Address Translation
- GC/WL/Refresh/...

Flash Controller
- ECC
- Randomizer

DRAM
- Host Request Queue
- Write Buffer
- Logical-to-Physical Mappings
- Metadata (e.g., P/E Cycles)

NAND Flash Package

Logical-to-Physical Mappings

Metadata (e.g., P/E Cycles)
Request Handling: Write

- Communication with the host operating system (receives & returns requests)
 - Via a certain interface (SATA or NVMe)

- A host I/O request includes
 - Request direction (read or write)
 - Offset (start sector address)
 - Size (number of sectors)
 - Typically aligned by 4 KiB
Request Handling: Write

- **Host Interface Layer (HIL)**
- **Flash Translation Layer (FTL)**
 - Data Cache Management
 - Address Translation
 - GC/WL/Refresh/…

Flash Controller
- ECC
- Randomizer

DRAM
- Host Request Queue
- Write Buffer
- Logical-to-Physical Mappings
- Metadata (e.g., P/E Cycles)

- **Buffering data to write (read from NAND flash memory)**
 - Essential to reducing write latency
 - Enables flexible I/O scheduling
 - Helpful for improving lifetime (not so likely)

- **Limited size (e.g., tens of MBs)**
 - Needs to ensure data integrity even under sudden power-off
 - Most DRAM capacity is used for L2P mappings
Request Handling: Write

Host Interface Layer (HIL)

Flash Translation Layer (FTL)
- Data Cache Management
- Address Translation
- GC/WL/Refresh/...

Flash Controller
- ECC
- Randomizer

DRAM
- Host Request Queue
- Write Buffer
- Logical-to-Physical Mappings
- Metadata (e.g., P/E Cycles)

- Core functionality for out-of-place writes
 - To hide the erase-before-write property
- Needs to maintain L2P mappings
 - Logical Page Address (LPA) → Physical Page Address (PPA)
- Mapping granularity: 4 KiB
 - 4 Bytes for 4 KiB → 0.1% of SSD capacity
Request Handling: Write

Host Interface Layer (HIL)

Flash Translation Layer (FTL)
- Data Cache Management
- Address Translation
- GC/WL/Refresh/...

Flash Controller
- ECC
- Randomizer
- NAND Flash Package
- NAND Flash Package
- NAND Flash Package

DRAM
- Host Request Queue
- Write Buffer
- Logical-to-Physical Mappings
- Metadata (e.g., P/E Cycles)

- Garbage collection (GC)
 - Reclams free pages
 - Selects a victim block → copies all valid pages → erase the victim block

- Wear-leveling (WL)
 - Evenly distributes P/E cycles across NAND flash blocks
 - Hot/cold swapping

- Data refresh
 - Refresh pages with long retention ages
Request Handling: Write

Host Interface Layer (HIL)
- Data Cache Management
- Address Translation
- GC/WL/Refresh/

Flash Translation Layer (FTL)
- Write Buffer
- Logical-to-Physical Mappings
- Metadata (e.g., P/E Cycles)

Flash Controller
- ECC
- Randomizer

- NAND Flash Package
- NAND Flash Package
- NAND Flash Package

DRAM
- Host Request Queue
- Error-correcting codes (ECC)
 - Can detect/correct errors: e.g., 72 bits/1 KiB error-correction capability
 - Stores additional parity information together with raw data
- Randomizer
 - Scrambling data to write
 - To avoid worst-case data patterns that can lead to significant errors
- Issues NAND flash commands
Request Handling: Read

- Host Interface Layer (HIL)

- Flash Translation Layer (FTL)
 - Data Cache Management
 - Address Translation
 - GC/WL/Refresh/...

- Flash Controller
 - ECC
 - Randomizer

- NAND Flash Package

- DRAM
 - Host Request Queue
 - Write Buffer
 - Logical-to-Physical Mappings
 - Metadata (e.g., P/E Cycles)

- First checks if the request data exists in the write buffer
 - If so, returns the corresponding request immediately with the data

- A host read request can be involved with several pages
 - Such a request can be returned only after all the requested data is ready
Request Handling: Read

- **Host Interface Layer (HIL)**
- **Flash Translation Layer (FTL)**
 - Data Cache Management
 - Address Translation
 - GC/WL/Refresh/…
- **Flash Controller**
 - ECC
 - Randomizer
- **DRAM**
 - Host Request Queue
 - Write Buffer
 - Logical-to-Physical Mappings
 - Metadata (e.g., P/E Cycles)

- Finds the PPA where the request data is stored from the L2P mapping table
Request Handling: Read

<table>
<thead>
<tr>
<th>Host Interface Layer (HIL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash Translation Layer (FTL)</td>
</tr>
<tr>
<td>- Data Cache Management</td>
</tr>
<tr>
<td>- Address Translation</td>
</tr>
<tr>
<td>- GC/WL/Refresh/...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Host Request Queue</td>
</tr>
<tr>
<td>- Write Buffer</td>
</tr>
<tr>
<td>- Logical-to-Physical Mappings</td>
</tr>
<tr>
<td>- Metadata (e.g., P/E Cycles)</td>
</tr>
</tbody>
</table>

Flash Controller

- ECC
- Randomizer

NAND Flash Packages

- NAND Flash Package
- NAND Flash Package
- NAND Flash Package

<table>
<thead>
<tr>
<th>CTRL</th>
</tr>
</thead>
</table>

- First reads the raw data from the flash chip
- Performs ECC decoding
- Derandomizes the raw data
- ECC decoding can fail
 - Retries reading of the page w/ adjusted V_{REF}
Today’s Agenda

- SSD Organization & Request Handling
- NAND Flash Organization
- NAND Flash Operation
A Flash Cell

- Basically, it is a transistor
A Flash Cell

- Basically, it is a transistor
 - w/ a special material: Floating gate (2D) or Charge trap (3D)
A Flash Cell

- Basically, it is a transistor
 - w/ a special material: Floating gate (2D) or Charge trap (3D)
 - Can hold electrons in a non-volatile manner

\[V_{PGM} = 20 \, V \]

\[\text{FG (Floating Gate)} \]

\[\text{G (Control Gate)} \]

\[\text{S (Source)} \]

\[\text{D (Drain)} \]

\[\text{GND (Substrate)} \]

\[V_{TH} \]

\[V_{GS} \]

\[\text{Tunneling} \]
A Flash Cell

- Basically, it is a transistor
 - w/ a special material: Floating gate (2D) or Charge trap (3D)
 - Can hold electrons in a non-volatile manner
 - Changes the cell’s threshold voltage (V_{TH})

![Flash Cell Diagram]

- S (Source)
- D (Drain)
- G (Control Gate)
- GND
- FG (Floating Gate)
- $Tunneling$
- $20 \, V$
- V_{GS}
- I_D
- V_{TH}
- V_{TH}'
- V_{REF}
- $V_{TH} < V_{REF}$
- $V_{TH} > V_{REF}$
Flash Cell Characteristics

- **Multi-leveling:** A flash cell can store multiple bits

 - *Program:* Inject electrons
 - *Erase:* Eject electrons

- **Retention loss:** A cell leaks electrons over time

 - 1 year
 - 10 years

- **Limited lifetime:** A cell wears out after P/E cycling

 - 1 year @ 1K P/E cycles
 - 1 year @ 10K P/E cycles
 - Retention error!
A NAND String

- Multiple (e.g., 128) flash cells are serially connected

$$V_{\text{PASS}} (> 6 \text{V})$$

Target Cell

$$V_{\text{PASS}}$$

$$V_{\text{PASS}}$$

NAND String
Pages and Blocks

- A large number (> 100,000) of cells operate concurrently

Page = 16 + α KiB

Block = {(# of WL) × (# of bits per cell)} pages
Pages and Blocks (Continued)

- Program and erase: Unidirectional
 - Programming a cell → Increasing the cell’s V_{TH}
 - Erasing a cell → Decreasing the cell’s V_{TH}

- Programming a page cannot change ‘0’ cells to ‘1’ cells → Erase-before-write property

- Erase unit: Block
 - Increase erase bandwidth
 - Makes in-place write on a page very inefficient → Out-of-place write & GC
A large number (> 1,000) of blocks share bitlines in a plane.
A large number (> 1,000) of blocks share bitlines in a plane.
Planes and Dies

- A die contains multiple (e.g., 2 – 4) planes

![Diagram of planes and blocks]

- Planes share decoders: limits internal parallelism (only operations @ the same WL offset)
Today’s Agenda

- SSD Organization & Request Handling
- NAND Flash Organization
- NAND Flash Operation
Threshold Voltage Distribution

- V_{TH} distribution of cells in a programmed page/block/chip

There are y cells whose $V_{TH} = xV$

Why distribution? Variations across the cells
- Some cells are more easily programmed or erased
Multi-level cell (MLC) technique

- \(2^m V_{TH}\) states required to store \(m\) bits in a single flash cell

Limited width of the \(V_{TH}\) window: Need to

- Make each \(V_{TH}\) state narrow
- Guarantee sufficient margins b/w adjacent \(V_{TH}\) states
V_{TH} Distribution of MLC NAND Flash

- **Multi-level cell (MLC) technique**
 - $2^m V_{TH}$ states required to store m bits in a single flash cell

- **Limited width** of the V_{TH} window: Need to
 - Make each V_{TH} state narrow
 - Guarantee sufficient margins b/w adjacent V_{TH} states
 - V_{TH} changes over time after programmed
 - Narrower margins \rightarrow Lower reliability
 - More bits per cell \rightarrow higher density but lower reliability
Basic Operation: Page Program
Basic Operation: Page Program

- **WL control** – All other cells operate as a **resistance**
Basic Operation: Page Program

- BL control – **Inhibits cells** to not be programmed

```
V_{PROG} \quad WL_k
```

```
program

0 1 0 1 0 ...

BL_0  BL_1  BL_2  BL_3  BL_{132,095}

inhibit
```
Basic Operation: Page Program

- **BL control** – **Inhibits cells** to not be programmed

Diagram:

- **V_{PROG}**
- **WL_k**
- **BL₀**
- **BL₁**
- **BL₂**
- **BL₃**
- **BL_{132,095}**

Connections:

- **To GND**
- **To V_{CC}**
Basic Operation: Page Program

- **V\text{PROG}** \(\rightarrow\) WL\(_k\)
- **BL\(_0\)**: Program
- **BL\(_1\)**: Inhibit
- **BL\(_2\)**
- **BL\(_3\)**
- **BL\(_{132,095}\)**

- \# of cells
- Erased (E)

Threshold voltage (\(V_{TH}\))

\(V_{REF}\)
Basic Operation: Page Program

V_{PROG} \rightarrow WL_k

BL_0: 0 (program)
BL_1: 1 (inhibit)
BL_2: 0
BL_3: 1
BL_{132,095}: 0

To GND
To V_{CC}
To GND
To V_{CC}
To GND

of cells

Threshold voltage (V_{TH})

Inhibited cells
Programmed cells

Erased (E)
Programmed

1
0

V_{REF}
Basic Operation: Page Program

Program and inhibit cells are shown in the diagram.

- Program cells: V_{prog} applied to WL$_k$.
- Inhibit cells: V_{cc} applied to BL.

V_{th}: Threshold voltage for cells.

- Erased (E): V_{ref}.
- Inhibited cells: Between V_{ref}.

Cells to program:
- Hard-to-program cells: V_{th} close to V_{ref}.
- Easy-to-program cells: V_{th} far from V_{ref}.

Number of cells:
- BL$_0$, BL$_1$, BL$_2$, BL$_3$, BL$_{132,095}$.
Basic Operation: Page Program

- Incremental Step-Pulse Programming (ISPP)

Diagram:
- **V_{PROG0}** and **WL_k**
- **BL_0** programmed
- **BL_1** inhibited
- **BL_2** and **BL_3** programmed
- **BL_{132,095}**

Legend:
- **# of cells**
- **Threshold voltage (V_{TH})**
- **Inhibited cells**
- **Erased (E)**
- **Cells to program**
- **V_{REF}**

Flow Chart:
- **Program**
- **Inhibit**
- **To GND**
- **To V_{CC}**
- **Verified as programmed**
Basic Operation: Page Program

- Incremental Step-Pulse Programming (ISPP)

- **Program**
 - WL_k
 - BL_0
 - BL_1
 - BL_2
 - BL_3
 - BL_{132,095}

- **Inhibit**
 - To GND
 - To V_{CC}

- **Cells to Program**
 - Inhibited cells
 - Erased (E)

- **Threshold voltage (V_{TH})**
 - V_{REF}
 - # of cells

- **Inhibited cells**
 - 1

- **Cells to program**
 - 1
Basic Operation: Page Program

- Incremental Step-Pulse Programming (ISPP)

![Diagram]

- **Program** (BL0)
 - 0
 - To GND

- **Inhibit** (BL1)
 - 1
 - To Vcc

- (BL2)
 - 0
 - To Vcc

- (BL3)
 - 1
 - To Vcc

- (BL132,095)
 - 0
 - To GND

`V_{PROG}` **WL**

- # of cells
- Erased (E)
- Inhibited cells
- VREF
- Cells to program

Threshold voltage (V_{TH})
Basic Operation: Page Program

- Incremental Step-Pulse Programming (ISPP)

![Diagram showing page programming with control signals and voltage levels for inhibit and program]
Basic Operation: Page Read

- WL control – All other cells operate as a resistance

![Diagram showing WL control and cell operation](image-url)
Basic Operation: Page Read

- **BL control** – Charge all BLs

![Diagram showing BL control and Vcc connections](image_url)

- **# of cells**
 - **Erased (E)**
 - **Programmed**

- **Threshold voltage (V_{TH})**
 - **V_{REF}**
Basic Operation: Page Read

- Sensing the current through BLs

\[V_{\text{REF}} \quad \text{WL}_k \]

\[\begin{array}{c}
\text{BL}_0 \\
\text{0} \\
0 \\
(\text{No current}) \\
(\text{Current}) \\
\text{1} \\
\text{BL}_1 \\
\text{BL}_2 \\
\text{BL}_3 \\
\end{array} \]

\[\begin{array}{c}
\text{0} \\
\text{1} \\
\text{0} \\
\text{1} \\
\text{BL}_{132,095} \\
\text{0} \\
\end{array} \]

- Threshold voltage (V\(_{\text{TH}}\))

\[V_{\text{TH}} < V_{\text{REF}} \quad \text{Erased (E)} \]

\[V_{\text{TH}} > V_{\text{REF}} \quad \text{Programmed} \]
Basic Operation: Page Read - MLC

- Sensing the current through BLs

[Diagram showing the sensing process through BLs]
Basic Operation: Page Read - MLC

- Sensing the current through BLs

![Diagram showing sensing the current through BLs with WL_k, BL_0 to BL_132,095, and cells E, P1 to P7 with reference voltages VREF0 to VREF6.](image-url)
Basic Operation: Page Read - MLC

- Sensing the current through BLs

![Diagram of Basic Operation: Page Read - MLC]

- Sensing the current through BLs

![Diagram of Basic Operation: Page Read - MLC]

- Sensing the current through BLs

![Diagram of Basic Operation: Page Read - MLC]
Basic Operation: Page Read - MLC

- Sensing the current through BLs
Basic Operation: Page Read - MLC

- Sensing the current through BLs

![Diagram showing sensing the current through BLs](image_url)
Basic Operation: Page Read - MLC

- Sensing the current through BLs

...
Basic Operation: Page Read - MLC

- Sensing the current through BLs

Sensing the current through BLs

V_{TH} < V_{REF}

- **V_{TH} < V_{REF}**
- **V_{TH} < V_{REF}**
- **V_{TH} < V_{REF}**
- **V_{TH} < V_{REF}**

CSB

V_{REF0}

V_{REF1}

V_{REF2}

V_{REF3}

V_{REF4}

V_{REF5}

V_{REF6}

P4

P5

P6

P7

V_{TH}
Basic Operation: Page Read – Takeaways

- MLC NAND flash memory requires an **on-chip XOR logic**
- Bit-encoding affects the read latency!
 - Compare # of sensing for LSB

![Diagram of V_{TH} and V_{REF} levels with binary values for MSB and LSB]
Basic Operation: Page Read – Takeaways

- MLC NAND flash memory requires an on-chip XOR logic
- Bit-encoding affects the read latency!
 - Compare # of sensing for LSB
Basic Operation: Page Read – Takeaways

- MLC NAND flash memory requires an on-chip XOR logic
- Bit-encoding affects the read latency!
 - Compare # of sensing for LSB

![Diagram showing V_{TH} for different states of cells](image-url)
Basic Operation: Page Read – Takeaways

- MLC NAND flash memory requires an on-chip XOR logic
- Bit-encoding affects the read latency!
 - Compare # of sensing for LSB

![Diagram of Page Read with V_{TH} and V_{REF} levels]

- # of cells
 - MSB
 - LSB
 - CSB
- E
 - P1
 - P2
 - P3
 - P4
 - P5
 - P6
 - P7
- V_{REF0}
 - V_{REF1}
 - V_{REF2}
 - V_{REF3}
 - V_{REF4}
 - V_{REF5}
 - V_{REF6}
P&S Modern SSDs
Basics of NAND Flash-Based SSDs

Dr. Mohammad Sadrosadati
Prof. Onur Mutlu
ETH Zürich
Spring 2024
26 March 2024