Hardware-Accelerated Genome Sequencing: A Co-Design Approach

Gagandeep Singh
Genome Analysis

NO machine can read the **entire** content of a genome

> CCTCCTCAGTGCCACCAGCCCAGCTTCCACACAGGCTTATTATTTAACACCTGTTCCCTGCCCTTGGAGTGAGGTGTCAAGGACCTAAACTAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAACTAATTTCTAAGCTTCTTCAATGTCAAGGACCTAATGTGCTAAACAGCACTTTTTTGACCATTATTTTGGATCTGAAAGAAATCAAGAATAAATGAAGGACTTGATACATTGGAAGAGGAGAGTCAAGGACCTACAGAAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAACTAATTTCTAAGCTTCTT

Mohammed Alser, “Intelligent Genome Analysis”, Computer Architecture, ETH Zurich, Fall 2020
Genome Sequencing Pipeline

Obtaining Genomic Sequencing Data

- DNA Extraction
- Sequencing
- DNA Fragmentation
- Illumina (Multiple images)
- Generating Sequencing Data
- ONT (Squiggle)
- PacBio (30-hour movie)

Basecalling

- Input signal
- CCGTCCCCCAGTAACAT

Read Mapping

- Indexing Reference Genome
 - Reference Genome Seeds
 - Seed content: 1, 4, 6, 3, 5, 12, 50, 52, 2, 100
 - Seed locations
- Seeding Read
 - Reference Genome Seeds
- Locating common seeds
 - Filter 1, Filter 2, Filter N
- Pre-alignment Filtering
 - Locations of common seeds: 1, 4, 6, 3, 5, 12, 2, 100
- Sequence Alignment
 - Reference Subsequence
 - Dynamic Programming Matrix

Mohammed Alser et al., "From molecules to genomic variations: Accelerating genome analysis via intelligent algorithms and architectures", Computational and Structural Biotechnology Journal, Volume 20, 2022
Basecalling

- **Basecalling is the first step in the genomics pipeline** that converts noisy electrical signals to nucleotide bases (i.e., A, C, G, T)
- Modern basecallers **use complex deep learning-based models**

![Nanopore Sequencer](image)

CCGTCAGTA
AGTCGAGCT
GTCCCCACTA
TTTCCGTCGA
GTAAGTCCA
Motivation: Effect of Pruning (1/2)
Motivation: Effect of Pruning (1/2)

85% of weights can be pruned leading to 6.67x lower model size without any loss in accuracy.
Motivation: Effect of Pruning (1/2)

97% of weights can be pruned leading to 33.33x lower model size while providing 81.20% accuracy.

Basecallers are often adapted from the speech recognition domain leading to over-parametrized models.
Motivation: Effect of Quantization (2/2)

Basecallers use floating-point precision to represent each neural network layer.

Provides full accuracy with 4x lower bits for weights and activations.
Develop a comprehensive framework for specializing and optimizing deep learning-based basecallers that provides **high efficiency and performance**
Our Proposal

Framework for Designing Efficient Deep Learning-Based Genomic Basecallers
RUBICON Framework

RUBICON provides two key mechanisms

QABAS: Quantization-aware basecalling architecture search

SkipClip: Skip connection removal by teaching
QABAS: Quantization-Aware Basecalling Architecture Search

• **QABAS automates** the process of finding efficient and high-performance hardware-aware genomics basecallers.

• **QABAS uses neural architecture search (NAS) to evaluate millions of different basecaller architectures.**

![Diagram showing the workflow of QABAS: Search Space → Search Strategy → Performance Estimation → Optimal Model]

- **Search Space**
- **Search Strategy**
- **Performance Estimation**
- **Optimal Model**

Performance Feedback → *Pick Different Models*
QABAS: Quantization-Aware Basecalling Architecture Search

Quantized Basecaller Neural Architecture Search (QABAS)

- <16,16>-bit Quant 1D Conv with 3 KS
- <8,8>-bit Quant 1D Conv with 5 KS
- <8,4>-bit Quant 1D Conv with 9 KS
- Identity

- <16,16>-bit Quant 1D Conv with 3 KS
- <8,8>-bit Quant 1D Conv with 5 KS
- <8,4>-bit Quant 1D Conv with 9 KS
- Identity

- <16,16>-bit Quant 1D Conv with 3 KS
- <8,8>-bit Quant 1D Conv with 5 KS
- <8,4>-bit Quant 1D Conv with 9 KS
- Identity
QABAS: Quantization-Aware Basecalling Architecture Search

Sequencing Data Preparation

Quantized Basecaller Neural Architecture Search (QABAS)

- \(<16,16\>\)-bit Quant 1D Conv with 3 KS
- \(<8,8\>\)-bit Quant 1D Conv with 5 KS
- \(<8,4\>\)-bit Quant 1D Conv with 9 KS

...Identity...

- \(<16,16\>\)-bit Quant 1D Conv with 3 KS
- \(<8,8\>\)-bit Quant 1D Conv with 5 KS
- \(<8,4\>\)-bit Quant 1D Conv with 9 KS

...Identity...

- \(<16,16\>\)-bit Quant 1D Conv with 3 KS
- \(<8,8\>\)-bit Quant 1D Conv with 5 KS
- \(<8,4\>\)-bit Quant 1D Conv with 9 KS

...Identity...

Hardware Constraints
QABAS: Quantization-Aware Basecalling Architecture Search
QABAS: Quantization-Aware Basecalling Architecture Search

Sequencing Data Preparation

Quantized Basecaller Neural Architecture Search (QABAS)

<16,16>-bit Quant 1D Conv with 3 KS
<8,8>-bit Quant 1D Conv with 5 KS
<8,4>-bit Quant 1D Conv with 9 KS

Identity

Hardware Constraints
SkipClip: Skip Connection Removal by Teaching

- SkipClip removes all the skip connections present in modern basecallers to reduce resource and storage requirements without any loss in basecalling accuracy.
- SkipClip uses knowledge distillation, where we train a smaller network (student) without skip connections to mimic a pre-trained bigger network (teacher) with skip connections.

![Diagram showing the teacher network and student network with skip connections removed at each epoch.](image)
RUBICALL: A Hardware-Optimized Basecaller

- RUBICALL is **developed using QABAS and SkipClip**
- RUBICALL is uses **mixed-precision computation**
Evaluation Methodology

• Comparison to **five state-of-the-art basecallers**
 - **Bonito-CTC**, an expert-designed convolutional neural network-based basecaller from ONT
 - **Bonito-CRF-fast**, a throughput-optimized recurrent neural network-based basecaller from ONT
 - **Dorado-fast**, a LibTorch version of Bontio-CRF_fast that is optimized for low precision
 - **SACall**, a transformer-based basecaller with attention mechanism
 - **Causalcall**, a state-of-the-art hand-tuned basecaller

• We evaluate two versions of **RUBICALL**
 - **RUBICALL-MP** using mixed-precision computation
 - **RUBICALL-FP** using 32-bit floating-point precision computation
Basecalling Throughput

![Basecalling Throughput Chart](image-url)
Basecalling Throughput

![Basecalling Throughput graph](Image)
Basecalling Throughput

RUBICALL-MP outperforms Dorado-fast by 3.96x
Basecalling Throughput

RUBICALL-MP provides **63.61x higher performance** when compared to RUBICALL-FP.
Basecalling Throughput

RUBICALL-MP **consistently outperforms** all the evaluated basecallers
Basecalling Accuracy
Basecalling Accuracy

RUBICALL provides **2.97% higher accuracy** than Dorado-fast
RUBICALL provides **similar accuracy** to an expert-designed basecaller while being **4.17x and 141.15x faster** with RUBICALL-FP and RUBICALL-MP, respectively.
Key Results

RUBICALL-MP provides the ability to basecall accurately, quickly, and efficiently scale basecalling by providing reductions in both model size and neural network model parameters.
Genome Sequencing Pipeline

Obtaining Genomic Sequencing Data

- DNA Extraction
 - DNA Fragmentation
- Sequencing
 - Illumina
 - Multiple images
 - ONT
 - Squiggle
 - PacBio
 - 30-hour movie

Generating Sequencing Data

Basecalling

Input signal

Read Mapping

A. Indexing
 - Reference Genome
 - Seeds
 - Seed content: 1, 4, 6, 3, 5, 12
 - Seed locations: 50, 52, 2, 100

B. Seeding
 - Read
 - Seeds
 - Locating common seeds
 - Locations of common seeds: 1, 4, 6, 3, 5, 12
 - Locations of common seeds: 2, 100

C. Pre-alignment Filtering
 - Filter 1
 - Filter 2
 - Filter N

D. Sequence Alignment
 - Reference Subsequence
 - Dynamic Programming Matrix

Mohammed Alser et al., “From molecules to genomic variations: Accelerating genome analysis via intelligent algorithms and architectures”, Computational and Structural Biotechnology Journal, Volume 20, 2022, Pages 4579-4599
Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, Juan Gomez-Luna, Henk Corporaal, Onur Mutlu,

FPGA-Based Near-Memory Acceleration of Modern Data-Intensive Applications

[Source Code]
Read Mapping Execution Time

>60% of the read mapper’s execution time is spent in sequence alignment

ONT FASTQ size: 103MB (151 reads), Mean length: 356,403 bp, std: 173,168 bp, longest length: 817,917 bp

Mohammed Alser, “Intelligent Genome Analysis”, Computer Architecture, ETH Zurich, Fall 2020
Large Search Space for Mapping Location

98% of candidate locations have high dissimilarity with a given read

Xin et al, BMC genomics (2013)
SneakySnake

• **Key idea:**
 - Approximate edit distance calculation is similar to Single Net Routing problem in VLSI chip
Motivation and Goal

Complex memory access patterns with limited performance and high energy consumption on CPU-based system

Goal:

• Mitigate the performance bottleneck of modern pre-alignment filtering in an energy-efficient way

• Evaluate the use of near-memory acceleration using a FPGA+HBM connected through an OpenCAPI interface

SAFARI
Near-Memory Acceleration

II. Two interconnect technologies: CAPI2 and OCAPI

III. Two processing element (PE) designs: single channel and multiple channel
Key Results of Near-Memory Acceleration
Key Results of Near-Memory Acceleration

Near-memory acceleration improves **performance** and **energy efficiency** up to 27× and 133×, respectively, over a server-grade CPU-based system.
Key Results of Near-Memory Acceleration

Near-memory acceleration improves **performance** and **energy efficiency** up to 27× and 133×, respectively, over a server-grade CPU-based system.

HBM design avoids memory access congestion, which is typical in DDR4-based FPGA designs.
Key Results of Near-Memory Acceleration

Near-memory acceleration improves **performance** and **energy efficiency** upto 27× and 133×, respectively, over a server-grade CPU-based system.

HBM design avoids memory access congestion, which is typical in DDR4-based FPGA designs.

Single channel & multiple channel HBM designs

Open-source: https://github.com/CMU-SAFARI
Near-Memory Acceleration

Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, Juan Gomez-Luna, Henk Corporaal, Onur Mutlu,

FPGA-Based Near-Memory Acceleration of Modern Data-Intensive Applications
[Source Code]
Genome Sequencing Pipeline

Obtaining Genomic Sequencing Data

- **DNA Extraction**
- **DNA Fragmentation**
- **Sequencing**
 - Illumina: Multiple images
 - ONT: Squiggle
 - PacBio: 30-hour movie

Generating Sequencing Data

- Reference Genomes

Read Mapping

- **Indexing**
 - Reference Genome

- **Seeding**
 - **Read**
 - **Seeds**
 - **Locating common seeds**

- **Pre-alignment Filtering**
 - **Filter 1**
 - **Filter 2**
 - **Filter N**

- **Sequence Alignment**
 - Dynamic Programming Matrix

Input signal

CCGCCCCCCCGCAGTAACAT

Mohammed Alser et al., “From molecules to genomic variations: Accelerating genome analysis via intelligent algorithms and architectures”, Computational and Structural Biotechnology Journal, Volume 20, 2022, Pages 4579-4599
Acknowledgements

• AMD:
 - Kristof Denolf
 - Alireza Khodamoradi

• SAFARI Group @ETH Zürich
 - Onur Mutlu
 - Mohammed Alser
 - Juan Gomez-Luna
 - Can Firtina
 - Meryem Banu Cavlak

• Henk Corporaal (TU Eindhoven)