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Genome Analysis

>CCTCCTCAGTGCCACCCAGCCCACTGGCAGCTCCCAAACAGGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTGAGGTGTCAAG
GACCTAAACTAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTT
CATGTCAAGGACCTAATGTGCTAAACAGCACTTTTTTGACCATTATTTTGGATCTGAAAGAAATCAAGAATAAATGAAGGACTTGATACATTG
GAAGAGGAGAGTCAAGGACCTACAGAAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAA
ACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCTGTGTTGCAGGTCTTCTTGCATTTCCCTGTCAAAAGAAAAAGAATTTAAAATTT
AAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCAGGCCAAGAGTTGCAAAAAAAAAAAAAGAAAAA
GAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTAGCCAGAATGG
TTGTGGGATGGGAGCCTCTGTGGACCGACCAGGTAGCTCTCTTTTCCACACTGTAGTCTCAAAGCTTCTTCATGTGGTTTCTCTGAGTGAAA
AAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTTTTCATGTCAAGGACC

TAATGTAGCTATACTGAACGTTATCTAGGGGAAAGATTGAAGGGGAGCTCTAAGGTCAACA……

machine can read the 
entire content of a genomeNO

Mohammed Alser, “Intelligent Genome Analysis”, Computer Architecture, ETH Zurich, Fall 2020 
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Basecalling

• Basecalling is the first step in the genomics pipeline that 
converts noisy electrical signals to nucleotide bases (i.e., A, C, G, T) 

• Modern basecallers use complex deep learning-based models

Nanopore Sequencer

Squiggle

CCGTCAGTA
AGTCGAGCT
GTCCCACTA
TTTCCGTCA
GTAAGTCCA
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Motivation: Effect of Pruning (1/2)
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Motivation: Effect of Pruning (1/2)

85% of weights can be pruned leading to 
6.67x lower model size without any loss in accuracy
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Motivation: Effect of Pruning (1/2)

97% of weights can be pruned leading to 
33.33x lower model size while providing 81.20% accuracy

Basecallers are often adapted from the speech recognition 
domain leading to over-parametrized models
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Motivation: Effect of Quantization (2/2)

Basecallers use floating-point precision to represent 
each neural network layer

Provides full accuracy with  4x lower bits for
weights and activations
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Develop a comprehensive framework 
for specializing and optimizing deep learning-based 

basecallers that provides high efficiency and performance

Our Goal
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Our Proposal

Framework for Designing 
Efficient Deep Learning-Based 

Genomic Basecallers
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RUBICON Framework

RUBICON provides two key mechanisms

QABAS: Quantization-aware basecalling
architecture search

SkipClip: Skip connection removal by  teaching
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QABAS: Quantization-Aware Basecalling Architecture Search

• QABAS automates the process of finding efficient and                       
high-performance hardware-aware genomics basecallers

• QABAS uses neural architecture search (NAS) to evaluate              
millions of different basecaller architectures 

Search 
Space

Search
Strategy

Performance 
Estimation

Pick Different 
Models

Performance 
Feedback

Optimal
Model
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QABAS: Quantization-Aware Basecalling Architecture Search
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Quantized Basecaller Neural Architecture Search (QABAS)
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QABAS: Quantization-Aware Basecalling Architecture Search
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QABAS: Quantization-Aware Basecalling Architecture Search
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QABAS: Quantization-Aware Basecalling Architecture Search
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SkipClip: Skip Connection Removal by Teaching

• SkipClip removes all the skip connections present in modern basecallers to
reduce resource and storage requirements without any loss in basecalling
accuracy

• SkipClip uses knowledge distillation, where we train a smaller network (student)
without skip connections to mimic a pre-trained bigger network (teacher) with
skip connections

Teacher
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Student
Network

Epoch:

Loss

n+1

+

+ +

Loss

n

+ +

+ +

Loss

n+2

+ +
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RUBICALL: A Hardware-Optimized Basecaller

• RUBICALL is developed using QABAS and SkipClip
• RUBICALL is uses mixed-precision computation
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Evaluation Methodology

• Comparison to five state-of-the-art basecallers
- Bonito-CTC, an expert-designed convolutional neural network-based

basecaller from ONT
- Bonito-CRF-fast, a throughput-optimized recurrent neural network-

based basecaller from ONT
- Dorado-fast, a LibTorch version of Bontio-CRF_fast that is optimized

for low precision
- SACall, a transformer-based basecaller with attention mechanism
- Causalcall, a state-of-the-art hand-tuned basecaller

• We evaluate two versions of RUBICALL
- RUBICALL-MP using mixed-precision computation
- RUBICALL-FP using 32-bit floating-point precision computation
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Basecalling Throughput
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Basecalling Throughput
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Basecalling Throughput

RUBICALL-MP outperforms Dorado-fast by 3.96x
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Basecalling Throughput

RUBICALL-MP provides 63.61x higher performance 
when compared to RUBICALL-FP
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Basecalling Throughput

RUBICALL-MP consistently outperforms all the evaluated basecallers
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Basecalling Accuracy
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Basecalling Accuracy

RUBICALL provides 2.97% higher accuracy than Dorado-fast
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Basecalling Accuracy

RUBICALL provides similar accuracy to an expert-designed basecaller while being 
4.17x and 141.15x faster with RUBICALL-FP and RUBICALL-MP, respectively
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Key Results

RUBICALL-MP provides the ability to basecall accurately, quickly, and 
efficiently scale basecalling by providing reductions in both model size 

and neural network model parameters
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Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, Juan Gomez-Luna, Henk 
Corporaal, Onur Mutlu,
FPGA-Based Near-Memory Acceleration of Modern Data-Intensive Applications
IEEE Micro, 2021.
[Source Code]

Near-Memory Acceleration

https://arxiv.org/pdf/2106.06433.pdf
https://github.com/CMU-SAFARI/SneakySnake/tree/master/SneakySnake-HLS-HBM
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Read Mapping Execution Time

ONT FASTQ size: 103MB (151 reads), Mean length: 356,403 bp, std: 173,168 bp, longest length: 817,917 bp
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>60%
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minimap2

Mohammed Alser, “Intelligent Genome Analysis”, Computer Architecture, ETH Zurich, Fall 2020 
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Large Search Space for Mapping Location

of candidate locations 

have high dissimilarity 

with a given read

98% 

Cheng et al, BMC bioinformatics (2015)
Xin et al, BMC genomics (2013)
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Mohammed Alser, “Intelligent Genome Analysis”, Computer Architecture, ETH Zurich, Fall 2020 



34 |

SneakySnake

• Key idea:
- Approximate edit distance calculation is similar to Single Net Routing problem 

in VLSI chip

VLSI chip layout
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Motivation and Goal

Goal:
• Mitigate the performance bottleneck of modern pre-alignment filtering in an energy-efficient way

• Evaluate the use of near-memory acceleration using a FPGA+HBM connected through an OpenCAPI interface

Complex memory access patterns with limited performance and high energy consumption on
CPU-based system
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II. Two interconnect technologies: CAPI2 and OCAPI

Near-Memory Acceleration

POWER9 AC922 HBM-based AD9H7 board 

OCAPI

Source: AlphaData
Source: IBM

We evaluate:
I. Two POWER9+FPGA systems:

1. HBM-based AD9H7 board 
Xilinx Virtex Ultrascale+™ XCVU37P-2

2. DDR4-based AD9V3 board 
Xilinx Virtex Ultrascale+™ XCVU3P-2

III. Two processing element (PE) designs: single channel and multiple channel
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Key Results of Near-Memory Acceleration
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Key Results of Near-Memory Acceleration

Near-memory acceleration improves performance and       
energy efficiency upto 27× and 133×, respectively,                         

over a server-grade CPU-based system
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Key Results of Near-Memory Acceleration

HBM design avoids memory access congestion, which is typical in 
DDR4-based FPGA designs

Near-memory acceleration improves performance and       
energy efficiency upto 27× and 133×, respectively,                         

over a server-grade CPU-based system
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Key Results of Near-Memory Acceleration

HBM design avoids memory access congestion, which is typical in 
DDR4-based FPGA designs

Near-memory acceleration improves performance and       
energy efficiency upto 27× and 133×, respectively,                         

over a server-grade CPU-based system

Single channel & multiple channel HBM designs
Open-source: https://github.com/CMU-SAFARI

https://github.com/CMU-SAFARI
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Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, Juan Gomez-Luna, Henk 
Corporaal, Onur Mutlu,
FPGA-Based Near-Memory Acceleration of Modern Data-Intensive Applications
IEEE Micro, 2021.
[Source Code]

Near-Memory Acceleration

https://arxiv.org/pdf/2106.06433.pdf
https://github.com/CMU-SAFARI/SneakySnake/tree/master/SneakySnake-HLS-HBM
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