

HIGH-THROUGHPUT SEQUENCE ALIGNMENT USING REAL PROCESSING-IN-MEMORY SYSTEMS

Safaa Diab, Amir Nassereldine, Mohammed Alser, Juan Gómez Luna, Onur Mutlu, <u>Izzat El Hajj</u>

April 13, 2023 BIO-Arch Workshop

Observation: limited performance improvement as the number of CPU threads grows

Sequence Alignment Scaling on CPUs

Observation: limited performance improvement as the number of CPU threads grows

As the number of CPU threads grows, IPC decreases meaning threads spend more time idle

Sequence Alignment Scaling on CPUs

Observation: limited performance improvement as the number of CPU threads grows

As the number of CPU threads grows, IPC decreases meaning threads spend more time idle

cycle

per

3.0

2.0

1.0

threads | 1 8 16 32 48 | 1

NW

SWG

Sequence Alignment Scaling on CPUs

© All rights reserved. American University of Beirut 2023

Memory Bandwidth Bottleneck

CPU Chip

Conventional CPU processing

Processing-in-Memory

Conventional CPU processing

CPU Chip

Processing-in-memory (PIM)

UPMEM: The First Real PIM Hardware

UPMEM: The First Real PIM Hardware

Supported Algorithms

D		Α	Т	Α
	0	4	8	12
Α	4	0	4	8
Т	8	4	Q	4
С	12	8	4	2
Α	16	12	8	4

Needleman-Wunsch (NW)

GenASM

Smith-Waterman-Gotoh (SWG)

Wavefront Algorithm (WFA)

Cali, Damla Senol, et al. "GenASM: A high-performance, low-power approximate string matching acceleration framework for genome sequence analysis." MICRO, 2020. Marco-Sola, Santiago, et al. "Fast gap-affine pairwise alignment using the wavefront algorithm." Bioinformatics 37.4 (2021): 456-463.

Managing the UPMEM Memory Hierarchy

Using WRAM only for intermediate data structures

Managing the UPMEM Memory Hierarchy

Using WRAM only for intermediate data structures

Using WRAM and MRAM for intermediate data structures

Observation #1: The best performing CPU system is the one with the largest L3 cache (demonstrates memory-boundedness of sequence alignment)

Observation #2: PIM outperforms CPU in the majority of cases (up to 4.06× for SWG, up to 1.83× for WFA, and up to 2.56× for WFA-adaptive)

Observation #3: When data transfer time is not included, PIM outperforms CPU even more (up to 25.93× for WFA, up to 28.14× for WFA-adaptive)

Observation #3: When data transfer time is not included, PIM outperforms CPU even more (up to 25.93× for WFA, up to 28.14× for WFA-adaptive)

Observation #4: PIM does not outperform CPU for algorithms with regular access patterns at small read lengths

PIM vs. CPU for WFA-adaptive with Large Read Lengths

Observation #1: PIM continues to outperform CPU for very large read lengths

PIM vs. CPU for WFA-adaptive with Large Read Lengths

Observation #1: PIM continues to outperform CPU for very large read lengths

Observation #2: Scalability currently limited by WRAM capacity

PIM vs. CPU for WFA-adaptive with Large Read Lengths

PIM vs. GPU

Sequence	Edit	Throughput (alignments per second)		Throughput
length	distance	WFA-GPU	UPMEM (with transfer)	improvement
150	2%	9.09M	12.97M	$1.42 \times$
	5%	5.56M	7.03M	$1.27 \times$
1,000	2%	1.43M	1.10M	$0.77 \times$
	5%	370K	434K	$1.17 \times$
10,000	2%	25.0K	66.9K	$2.68 \times$
	5%	5.56K	11.81K	$2.12 \times$

Observation: PIM outperforms GPU in the majority of cases

Observation #1: For algorithms that use large data structures (NW and SWG), WRAM only does not scale

Observation #2: For algorithms that use small data structures (GenASM), WRAM only is better

Observation #3: For algorithms that use medium-sized data structures (WFA, WFA-adaptive), WRAM only is better for short reads while WRAM+MRAM is better for long reads

Summary

- Sequence alignment on traditional systems is limited by the memory bandwidth bottleneck
- Processing-in-memory (PIM) overcomes this bottleneck by placing cores near the memory
- Our framework, Alignment-in-Memory (AIM), is a PIM framework that supports multiple alignment algorithms (NW, SWG, GenASM, WFA)
 - Implemented on UPMEM, the first real PIM system.
- Results show substantial speedups over CPUs and GPUs
- AIM is available at: https://github.com/safaad/aim

