
Damla Senol Cali, Ph.D.
https://damlasenolcali.github.io/

damlasenolcali@gmail.com

Staff Software Engineer, Hardware Acceleration

BIO-Arch Workshop @ RECOMB 2023
April 14, 2023

Accelerating Genome Sequence Analysis via

Efficient Hardware/Algorithm Co-Design

mailto:damlasenolcali@gmail.com
mailto:damlasenolcali@gmail.com

Damla Senol Cali

Genome Sequencing

2

Sample Collection

Preparation

Sequencing

Genome Sequence
Analysis

Large DNA
molecule

Chopped DNA
fragments

Sequenced
reads

ACGTACCCCGT

GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT

ACGACGTAGCT

AAAAAAAAAA

ACGAGCGGGT

Damla Senol Cali

Current State of Sequencing

*From NIH (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)

3

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

Damla Senol Cali

Current State of Sequencing (cont’d.)

*From NIH (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)

4

Computation is a bottleneck!

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

Damla Senol Cali

Our Goal & Approach

❑ Our Goal:

Accelerating genome sequence analysis by efficient

hardware/algorithm co-design

❑ Our Approach:

(1) Analyze the multiple steps and the associated tools in

the genome sequence analysis pipeline,

(2) Expose the tradeoffs between accuracy, performance,

memory usage and scalability, and

(3) Co-design fast and efficient algorithms along with

scalable and energy-efficient customized hardware

accelerators for the key bottleneck steps of the pipeline

5

Damla Senol Cali

Research Contributions

6

BitMAc: FPGA-based near-memory acceleration of
bitvector-based sequence alignment

[Ongoing]

SeGraM: Universal genomic mapping accelerator for both
sequence-to-graph and sequence-to-sequence mapping

[ISCA 2022]

Bottleneck analysis of genome assembly pipeline for long reads

[Briefings in Bioinformatics, 2018]

GenASM: Approximate string matching framework for
genome sequence analysis

[MICRO 2020]

Damla Senol Cali

Nanopore Sequencing & Tools [BiB 2018]

7

Damla Senol Cali, Jeremie S. Kim, Saugata Ghose, Can
Alkan, and Onur Mutlu. "Nanopore Sequencing
Technology and Tools for Genome Assembly:
Computational Analysis of the Current State, Bottlenecks
and Future Directions." Briefings in Bioinformatics (2018).

BiB Version arXiv Version

Damla Senol Cali

Key Findings
❑ Laptops are becoming a popular platform for running genome assembly

tools, as the portability of a laptop makes it a good fit for in-field analysis

o Greater memory constraints,
o Lower computational power
o Limited battery life

❑ Memory usage is an important factor that greatly affects the performance
and the usability of the tool

o Data structure choices that can minimize the memory requirements
o Cache-efficient algorithms
o Keeping memory usage in check with the number of threads

❑ Scalability of the tool with the number of cores is an important requirement.
However, parallelizing the tool can increase the memory usage.

o Dividing the input data into batches
o Limiting the memory usage of each thread
o Dividing the computation instead of the dataset between simultaneous threads

8

Goal 1:
High-performance and low-power

Goal 2:
Memory-efficient

Goal 3:
Scalable/highly-parallel

Damla Senol Cali

Research Contributions

9

GenASM: Approximate string matching framework for
genome sequence analysis

[MICRO 2020]

BitMAc: FPGA-based near-memory acceleration of
bitvector-based sequence alignment

[Ongoing]

SeGraM: Universal genomic mapping accelerator for both
sequence-to-graph and sequence-to-sequence mapping

[ISCA 2022]

Bottleneck analysis of genome assembly pipeline for long reads

[Briefings in Bioinformatics, 2018]

Damla Senol Cali

Read Mapping Pipeline

10

Indexing
(Pre-processing step to generate index of reference)

Seeding
(Query the index)

Pre-Alignment Filtering
(Filter out dissimilar sequences)

Read Alignment
(Perform distance/score calculation & traceback)

Reference
genome

Hash-table
based index

Potential mapping
locations

Optimal
alignment

Remaining
potential mapping
locations

Reads

Reference
segment

Query read

Damla Senol Cali

GSA with Read Mapping
❑ Read mapping: First key step in genome sequence analysis (GSA)

o Aligns reads to one or more possible locations within

the reference genome, and

o Finds the matches and differences between the read and

the reference genome segment at that location

❑ Multiple steps of read mapping require approximate string matching

o Approximate string matching (ASM) enables read mapping to

account for sequencing errors and genetic variations in the reads

❑ Bottlenecked by the computational power and memory bandwidth

limitations of existing systems

11

Damla Senol Cali

❑ Sequenced genome may not exactly map to the reference genome due

to genetic variations and sequencing errors

❑ Approximate string matching (ASM):

o Detect the differences and similarities between two sequences

o In genomics, ASM is required to:

▪ Find the minimum edit distance (i.e., total number of differences)

▪ Find the optimal alignment with a traceback step

◦ Sequence of matches, substitutions, insertions and deletions,

along with their positions

o Usually implemented as a dynamic programming (DP) based algorithm

Approximate String Matching

12

Reference:

Read:

insertionsubstitutiondeletion

A A A AT G T T TA G T G C TA C T G

A A AT G T T TA C T G C TA C T T G

A A A AT G T T TA G T G C TA C T G

A A A AT G T T TA C T G C TA C T T G

A A A AT G T T TA G T G C TA C T G

A A A AT G T T TA G T G C TA C T T G

A A A AT G T T TA G T G C TA C T T G

A A A AT G T T TA G T G C TA C T T GC

A

T

G

Damla Senol Cali

Bitap Algorithm
❑ Bitap1,2 performs ASM with fast and simple bitwise operations

o Amenable to efficient hardware acceleration

o Computes the minimum edit distance between a text (e.g., reference

genome) and a pattern (e.g., read) with a maximum of k errors

❑ Step 1: Pre-processing (per pattern)

o Generate a pattern bitmask (PM) for each character in the alphabet

(A, C, G, T)

o Each PM indicates if character exists at each position of the pattern

❑ Step 2: Searching (Edit Distance Calculation)

o Compare all characters of the text with the pattern by using:

▪ Pattern bitmasks

▪ Status bitvectors that hold the partial matches

▪ Bitwise operations
[1] R. A. Baeza-Yates and G. H. Gonnet. "A New Approach to Text Searching." CACM, 1992.

[2] S. Wu and U. Manber. "Fast Text Searching: Allowing Errors." CACM, 1992.

13

Damla Senol Cali

Limitations of Bitap

1) Data Dependency Between Iterations:

o Two-level data dependency forces the consecutive iterations to take

place sequentially

14

Damla Senol Cali

Bitap Algorithm (cont’d.)

Large number of
iterations

❑ Step 2: Edit Distance Calculation

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion = oldR[d-1]

substitution = oldR[d-1] << 1

insertion = R[d-1] << 1

match = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match.

If 0, match with d many errors.

15

Damla Senol Cali

Bitap Algorithm (cont’d.)

Data dependency
between iterations

(i.e., no
parallelization)

❑ Step 2: Edit Distance Calculation

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion = oldR[d-1]

substitution = oldR[d-1] << 1

insertion = R[d-1] << 1

match = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match.

If 0, match with d many errors.

16

Damla Senol Cali

Limitations of Bitap

1) Data Dependency Between Iterations:

o Two-level data dependency forces the consecutive iterations to take

place sequentially

2) No Support for Traceback:

o Bitap does not include any support for optimal alignment identification

17

Damla Senol Cali

Bitap Algorithm (cont’d.)

❑ Step 2: Edit Distance Calculation

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion = oldR[d-1]

substitution = oldR[d-1] << 1

insertion = R[d-1] << 1

match = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match.

If 0, match with d many errors.

18

Does not store and process
these intermediate bitvectors
to find the optimal alignment

(i.e., no traceback)

Damla Senol Cali

Hardware

Algorithm

Limitations of Bitap

1) Data Dependency Between Iterations:

o Two-level data dependency forces the consecutive iterations to take

place sequentially

2) No Support for Traceback:

o Bitap does not include any support for optimal alignment identification

3) No Support for Long Reads:

o Each bitvector has a length equal to the length of the pattern

o Bitwise operations are performed on these bitvectors

4) Limited Compute Parallelism:

o Text-level parallelism

o Limited by the number of compute units in existing systems

5) Limited Memory Bandwidth:

o High memory bandwidth required to read and write the computed

bitvectors to memory

19

Damla Senol Cali

GenASM: ASM Framework for GSA

❑ GenASM: First ASM acceleration framework for GSA
o Approximate string matching (ASM) acceleration framework based

on the Bitap algorithm

❑We overcome the five limitations that hinder Bitap’s use in GSA:

o Modified and extended ASM algorithm
▪ Highly-parallel Bitap with long read support
▪ Novel bitvector-based algorithm to perform traceback

o Specialized, low-power and area-efficient hardware for both
modified Bitap and novel traceback algorithms

Our Goal:

Accelerate approximate string matching

by designing a fast and flexible framework,

which can accelerate multiple steps of genome sequence analysis

20

SW

HW

Damla Senol Cali

GenASM-DC GenASM-TB

GenASM Hardware Design

21

GenASM-DC:
generates bitvectors

and performs edit
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the
optimal alignment

Host
CPU

TB-SRAM1

TB-SRAM2

TB-SRAMn

GenASM-TB
Accelerator

GenASM-DC
Accelerator

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Main
Memory

DC-SRAMDC-SRAM

GenASM-DC GenASM-TB

TB-SRAM1

TB-SRAM2

TB-SRAMn

.

.

.

Damla Senol Cali

GenASM Hardware Design

22

GenASM-DC GenASM-TB

Host
CPU

TB-SRAM1

TB-SRAM2

TB-SRAMn

GenASM-TB
Accelerator

GenASM-DC
Accelerator

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Main
Memory

DC-SRAMDC-SRAM

GenASM-DC GenASM-TB

TB-SRAM1

TB-SRAM2

TB-SRAMn

.

.

.

reference
& query

locations

Write
bitvectors

reference
text

& query
pattern

sub-text &
sub-pattern

Read
bitvectors

Generate
bitvectors

2

1

3

4

5 6

GenASM-DC:
generates bitvectors

and performs edit
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the
optimal alignment

Read
bitvectors

6
Write

bitvectors

5

Generate
bitvectors 4

sub-text &
sub-pattern3

reference
text

& query
pattern

2

reference
& query

locations

1

Find the
traceback output

7

Damla Senol Cali

GenASM Hardware Design

23

GenASM-DC GenASM-TB

Host
CPU

TB-SRAM1

TB-SRAM2

TB-SRAMn

GenASM-TB
Accelerator

GenASM-DC
Accelerator

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Main
Memory

DC-SRAMDC-SRAM

GenASM-DC GenASM-TB

TB-SRAM1

TB-SRAM2

TB-SRAMn

.

.

.

reference
& query

locations

Write
bitvectors

reference
text

& query
pattern

sub-text &
sub-pattern

Read
bitvectors

Find the
traceback output

Generate
bitvectors

2

1

3

4

5 6

7

GenASM-DC:
generates bitvectors

and performs edit
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the
optimal alignment

Our specialized compute units and on-chip SRAMs help us to:

→ Match the rate of computation with memory capacity and bandwidth

→ Achieve high performance and power efficiency

→ Scale linearly in performance with

the number of parallel compute units that we add to the system

Damla Senol Cali

GenASM-DC: Hardware Design
❑ Linear cyclic systolic array-based accelerator

o Designed to maximize parallelism and minimize memory bandwidth and
memory footprint

24

Processing Block (PB)

Processing Core (PC)

OldR[d-1] <<

<<

<<

R[d-1]

OldR[d]

PatternMask Match

R[d]

Substitution

Insertion

Deletion

OldR
out

PM
out

PM
out

OldR in

PM in

PC

PE1

PC

PE2

PC

PEp-1

PC

PEp

OldR
out

PC

PE

DC-SRAM

TB-SRAMp-1

Intermediate Bitvectors

TB-SRAMpTB-SRAM2TB-SRAM1

Damla Senol Cali

Bitwise
Comparisons

CIGAR string

Last CIGAR

<<

match

CIGAR
out

1

2
.
.

64

192
insertion

deletion

subs

64

64

64

64

1

2

Next Rd
Addr

Compute

3

GenASM-TB

GenASM-TB: Hardware Design

❑ Very simple logic:

❶Reads the bitvectors from one of the TB-SRAMs using the computed
address
❷Performs the required bitwise comparisons to find the traceback output
for the current position
❸Computes the next TB-SRAM address to read the new set of bitvectors

25

Bitwise
Comparisons

CIGAR string

Last CIGAR

<<

match

CIGAR
out

1

2
.
.

64

192
insertion

deletion

subs

64

64

64

64

to main
memory

1

2

Next Rd
Addr

Compute

3

1.5KB
TB-SRAM1

1.5KB
TB-SRAM2

1.5KB
TB-SRAM64

1

2

3

Damla Senol Cali

Use Cases of GenASM

(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate

reference regions

(2) Pre-Alignment Filtering for Short Reads

o Quickly identify and filter out the unlikely candidate reference

regions for each read

(3) Edit Distance Calculation

o Measure the similarity or distance between two sequences

❑ We also discuss other possible use cases of GenASM in our paper:

o Read-to-read overlap finding, hash-table based indexing, whole

genome alignment, generic text search

26

Damla Senol Cali

Evaluation Methodology

❑We evaluate GenASM using:

o Synthesized SystemVerilog models of the GenASM-DC and

GenASM-TB accelerator datapaths

o Detailed simulation-based performance modeling

❑ 16GB HMC-like 3D-stacked DRAM architecture

o 32 vaults

o 256GB/s of internal bandwidth, clock frequency of 1.25GHz

o In order to achieve high parallelism and low power-consumption

o Within each vault, the logic layer contains a GenASM-DC

accelerator, its associated DC-SRAM, a GenASM-TB accelerator,

and TB-SRAMs.

27

Damla Senol Cali

Evaluation Methodology (cont’d.)

28

SW Baselines HW Baselines

Read Alignment
Minimap21

BWA-MEM2

GACT (Darwin)3

SillaX (GenAx)4

Pre-Alignment Filtering – Shouji5

Edit Distance Calculation Edlib6 ASAP7

[1] H. Li. "Minimap2: Pairwise Alignment for Nucleotide Sequences." In Bioinformatics, 2018.
[2] H. Li. "Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM." In arXiv, 2013.

[3] Y. Turakhia et al. "Darwin: A genomics co-processor provides up to 15,000 x acceleration on long read assembly." In ASPLOS, 2018.
[4] D. Fujiki et al. "GenAx: A genome sequencing accelerator." In ISCA, 2018.

[5] M. Alser. "Shouji: A fast and efficient pre-alignment filter for sequence alignment." In Bioinformatics, 2019.
[6] M. Šošić et al. "Edlib: A C/C++ library for fast, exact sequence alignment using edit distance." In Bioinformatics, 2017.

[7] S.S. Banerjee et al. ”ASAP: Accelerated short-read alignment on programmable hardware." In TC, 2018.

Damla Senol Cali

Evaluation Methodology (cont’d.)

❑ For Use Case 1: Read Alignment, we compare GenASM with:

o Minimap2 and BWA-MEM (state-of-the-art SW)

▪ Running on Intel® Xeon® Gold 6126 CPU (12-core) operating

@2.60GHz with 64GB DDR4 memory

▪ Using two simulated datasets:

◦ Long ONT and PacBio reads: 10Kbp reads, 10-15% error rate

◦ Short Illumina reads: 100-250bp reads, 5% error rate

o GACT of Darwin and SillaX of GenAx (state-of-the-art HW)

▪ Open-source RTL for GACT

▪ Data reported by the original work for SillaX

▪ GACT is best for long reads, SillaX is best for short reads

29

Damla Senol Cali

Evaluation Methodology (cont’d.)
❑ For Use Case 2: Pre-Alignment Filtering, we compare GenASM with:

o Shouji (state-of-the-art HW – FPGA-based filter)

▪ Using two datasets provided as test cases:

• 100bp reference-read pairs with an edit distance threshold of 5

• 250bp reference-read pairs with an edit distance threshold of 15

❑ For Use Case 3: Edit Distance Calculation, we compare GenASM with:

o Edlib (state-of-the-art SW)

▪ Using two 100Kbp and 1Mbp sequences with similarity ranging

between 60%-99%

o ASAP (state-of-the-art HW – FPGA-based accelerator)

▪ Using data reported by the original work

30

Damla Senol Cali

Key Results – Area and Power
❑ Based on our synthesis of GenASM-DC and GenASM-TB accelerator

datapaths using the Synopsys Design Compiler with a 28nm process:

o Both GenASM-DC and GenASM-TB operate @ 1GHz

31

Damla Senol Cali

Key Results – Area and Power
❑ Based on our synthesis of GenASM-DC and GenASM-TB accelerator

datapaths using the Synopsys Design Compiler with a 28nm process:

o Both GenASM-DC and GenASM-TB operate @ 1GHz

32

GenASM has low area and power overheads

Damla Senol Cali

Key Results (cont’d.)

33

(1) Read Alignment

❑ 116× speedup, 37× less power than Minimap2 (state-of-the-art SW)

❑ 111× speedup, 33× less power than BWA-MEM (state-of-the-art SW)

❑ 3.9× better throughput, 2.7× less power than Darwin (state-of-the-art HW)

❑ 1.9× better throughput, 82% less logic power than GenAx (state-of-the-art HW)

(2) Pre-Alignment Filtering

❑ 3.7× speedup, 1.7× less power than Shouji (state-of-the-art HW), while

significantly improving the accuracy of pre-alignment filtering

(3) Edit Distance Calculation

❑ 22–12501× speedup, 548–582× less power than Edlib (state-of-the-art SW)

❑ 9.3–400× speedup, 67× less power than ASAP (state-of-the-art HW)

Damla Senol Cali

Additional Details in the Paper

❑ Details of the GenASM-DC and GenASM-TB algorithms

❑ Big-O analysis of the algorithms

❑ Detailed explanation of evaluated use cases

❑ Evaluation methodology details

(datasets, baselines, performance model)

❑ Additional results for the three evaluated use cases

❑ Sources of improvements in GenASM

(algorithm-level, hardware-level, technology-level)

❑ Discussion of four other potential use cases of GenASM

34

Damla Senol Cali

Summary of GenASM
❑GenASM: Approximate string matching (ASM) acceleration

framework to accelerate multiple steps of genome sequence

analysis

o First to enhance and accelerate Bitap for ASM with genomic

sequences

o Co-design of our modified scalable and memory-efficient

algorithms with low-power and area-efficient hardware

accelerators

❑GenASM supports three different use cases: read alignment, pre-

alignment filtering, edit distance calculation

❑GenASM is significantly more efficient for all the three use cases

than state-of-the-art software and hardware baselines

35

Damla Senol Cali

GenASM [MICRO 2020] – Paper & Talk

36

MICRO’20 Paper MICRO’20 Talk

Damla Senol Cali

GenASM – Source Code

37

https://github.com/CMU-SAFARI/GenASM

https://github.com/CMU-SAFARI/GenASM

Damla Senol Cali

Research Contributions

38

GenASM: Approximate string matching framework for
genome sequence analysis

[MICRO 2020]

BitMAc: FPGA-based near-memory acceleration of
bitvector-based sequence alignment

[Ongoing]

SeGraM: Universal genomic mapping accelerator for both
sequence-to-graph and sequence-to-sequence mapping

[ISCA 2022]

Bottleneck analysis of genome assembly pipeline for long reads

[Briefings in Bioinformatics, 2018]

Damla Senol Cali

Sequence-to-Sequence (S2S) Mapping Sequence-to-Graph (S2G) Mapping

Genome Sequence Analysis

39

Sequence-to-graph mapping results in notable quality improvements.

However, it is a more difficult computational problem,

with no prior hardware design.

❑ Mapping the reads to a reference genome (i.e., read mapping) is a

critical step in genome sequence analysis

Linear Reference: ACGTACGT

Read: ACGG

Alternative Sequence: ACGGACGT

Alternative Sequence: ACGTTACGT

Alternative Sequence: ACG‒ACGT

Graph-based Reference:

Read: ACGG

Damla Senol Cali

Genome Graphs

Genome graphs:

❑ Combine the linear reference genome with the known genetic

variations in the entire population as a graph-based data structure

❑ Enable us to move away from aligning with a single linear reference

genome (reference bias) and more accurately express the genetic

diversity in a population

40

Sequence #1: ACGTACGT ACGTACGT

Damla Senol Cali

Genome Graphs

Genome graphs:

❑ Combine the linear reference genome with the known genetic

variations in the entire population as a graph-based data structure

❑ Enable us to move away from aligning with a single linear reference

genome (reference bias) and more accurately express the genetic

diversity in a population

41

Sequence #1: ACGTACGT

Sequence #2: ACGGACGT

ACGTACGT

Damla Senol Cali

Genome Graphs

Genome graphs:

❑ Combine the linear reference genome with the known genetic

variations in the entire population as a graph-based data structure

❑ Enable us to move away from aligning with a single linear reference

genome (reference bias) and more accurately express the genetic

diversity in a population

42

ACG ACGT

T

G

Sequence #1: ACGTACGT

Sequence #2: ACGGACGT

Damla Senol Cali

Genome Graphs

Genome graphs:

❑ Combine the linear reference genome with the known genetic

variations in the entire population as a graph-based data structure

❑ Enable us to move away from aligning with a single linear reference

genome (reference bias) and more accurately express the genetic

diversity in a population

43

ACG ACGT

T

G

Sequence #1: ACGTACGT

Sequence #2: ACGGACGT

Sequence #3: ACGTTACGT

Damla Senol Cali

Genome Graphs

Genome graphs:

❑ Combine the linear reference genome with the known genetic

variations in the entire population as a graph-based data structure

❑ Enable us to move away from aligning with a single linear reference

genome (reference bias) and more accurately express the genetic

diversity in a population

44

ACG ACGT

T

G

T

Sequence #1: ACGTACGT

Sequence #2: ACGGACGT

Sequence #3: ACGTTACGT

Damla Senol Cali

Genome Graphs

Genome graphs:

❑ Combine the linear reference genome with the known genetic

variations in the entire population as a graph-based data structure

❑ Enable us to move away from aligning with a single linear reference

genome (reference bias) and more accurately express the genetic

diversity in a population

45

ACG ACGT

T

G

T

Sequence #1: ACGTACGT

Sequence #2: ACGGACGT

Sequence #3: ACGTTACGT

Sequence #4: ACGACGT

Damla Senol Cali

Genome Graphs

Genome graphs:

❑ Combine the linear reference genome with the known genetic

variations in the entire population as a graph-based data structure

❑ Enable us to move away from aligning with a single linear reference

genome (reference bias) and more accurately express the genetic

diversity in a population

46

ACG ACGT

T

G

T

Sequence #1: ACGTACGT

Sequence #2: ACGGACGT

Sequence #3: ACGTTACGT

Sequence #4: ACGACGT

Damla Senol Cali

Sequence-to-Graph Mapping Pipeline

47

Pre-Processing
Steps (Offline)

Seed-and-Extend
Steps (Online)

Indexing
(index the nodes of the graph)

Seeding
(query the index & find the seed matches)

Filtering/Chaining/Clustering
(filter out dissimilar query read and subgraph pairs)

S2G Alignment
(perform distance/score calculation & traceback)

Linear reference
genome

Known genetic
variations

Reads from
sequenced

genome

0.2

1

2

3

Genome Graph Construction
(construct the graph using a linear reference genome and variations)

0.1

Genome graph

Hash-table-based index (of graph nodes)

Candidate mapping locations (subgraphs)

Remaining candidate mapping locations (subgraphs)

Optimal alignment between read & subgraph

Damla Senol Cali

S2S vs. S2G Alignment

48

Damla Senol Cali

S2S vs. S2G Alignment

49

In contrast to S2S alignment,

S2G alignment must incorporate non-neighboring characters

as well whenever there is an edge (i.e., hop)

from the non-neighboring character to the current character

Damla Senol Cali

Based on our analysis with GraphAligner and vg:

Observation 1: Alignment step is the bottleneck

Observation 2: Alignment suffers from high cache miss rates

Observation 3: Seeding suffers from the DRAM latency bottleneck

Observation 4: Baseline tools scale sublinearly

Observation 5: Existing S2S mapping accelerators are unsuitable

for the S2G mapping problem

Observation 6: Existing graph accelerators are unable to handle

S2G alignment

Analysis of State-of-the-Art Tools

50

SW

HW

Damla Senol Cali

SeGraM: First universal algorithm/hardware co-designed genomic mapping

accelerator that can support both sequence-to-graph and sequence-to-

sequence mapping, for both short and long reads

❑ First algorithm/hardware co-design for sequence-to-graph mapping

❑ We base SeGraM upon a minimizer-based seeding algorithm and a

novel bitvector-based alignment algorithm

❑ We co-design both algorithms with high-performance, scalable, and

efficient hardware accelerators

SeGraM: Universal Genomic Mapping Accelerator

51

Our Goal:

Specialized, high-performance, scalable, and low-cost

algorithm/hardware co-design that alleviates bottlenecks in

multiple steps of sequence-to-graph mapping

SW

HW

Damla Senol Cali

SeGraM Hardware Design

52

SeGraM Accelerator

MinSeed (MS)

Host
CPU

Main Memory (graph-based reference & index)

Find
Minimizers

BitAlign (BA)

Read
Scratchpad

Minimizer
Scratchpad

Filter
Frequencies

by Frequency

Seed
Scratchpad

Find
Candidate

Seed Regions

MinSeed (MS)

Find
Minimizers

Read
Scratchpad

Minimizer
Scratchpad

Filter
Minimizers

by Frequency

Seed
Scratchpad

Find
Candidate

Seed Regions

Input Scratchpad

Generate
Bitvectors

Perform
Traceback

Bitvector Scratchpad

Hop Queues

BitAlign (BA)

Input Scratchpad

Generate
Bitvectors

Perform
Traceback

Bitvector Scratchpad

Hop Queues

MinSeed: first hardware
accelerator for

Minimizer-based Seeding

BitAlign: first hardware
accelerator for (Bitvector-based)

sequence-to-graph Alignment

Damla Senol Cali

Host
CPU

Main Memory (graph-based reference & index)Main Memory (graph-based reference & index)

SeGraM Hardware Design

53

SeGraM Accelerator

MinSeed (MS)

Host
CPU

Find
Minimizers

query
read

1

BitAlign (BA)

Read
Scratchpad

Minimizer
Scratchpad

Filter
Minimizers

by Frequency

Seed
Scratchpad

Find
Candidate

Seed Regions

Input Scratchpad

Generate
Bitvectors

Perform
Traceback

Bitvector Scratchpad

Hop Queues

query k-mers

minimizers

frequencies seed locations graph nodes

2

3

4

5

6

7

8
9

10

11

12 optimal alignment information

MinSeed: first hardware
accelerator for

Minimizer-based Seeding

BitAlign: first hardware
accelerator for (Bitvector-based)

sequence-to-graph Alignment

Damla Senol Cali

Main Memory (High Bandwidth Memory)

Minimizer
Finder

Read
Scratchpad

(6 kB)

Minimizer
Scratchpad

(40 kB)

Minimizer
Filter

by
Frequency

(<?)

Seed
Scratchpad

(4 kB)

Candidate
Seed

Region
Calculator
(+/−/×)

MinSeed HW

54

❑ MinSeed = 3 computation modules + 3 scratchpads + memory interface

o Computation modules: Implemented with simple logic

o Scratchpads: 50kB in total; employ double buffering technique to

hide the latency of MinSeed

o High-Bandwidth Memory (HBM): Enables low-latency and

highly-parallel memory access

Main Memory (High Bandwidth Memory)

Minimizer
Finder

Read
Scratchpad

(6 kB)

Minimizer
Scratchpad

(40 kB)

Minimizer
Filter

by
Frequency

(<?)

Seed
Scratchpad

(4 kB)

Candidate
Seed

Region
Calculator
(+/−/×)

frequency
threshold
(INPUT)

error rate,
read length

(INPUT)

query read
(INPUT)

candidate
subgraph
(OUTPUT)

Damla Senol Cali

BitAlign HW

55

❑ Linear cyclic systolic array-based accelerator

❑ Based on the GenASM hardware design*

❑ Incorporates hop queue registers to feed the bitvectors of

non-neighboring characters/nodes (i.e., hops)

Bitvector
Scratchpadx

PC

PEx

Bitvector
Scratchpadx+1

PC

PEx+1

HopQueueRegisterx

R[d-1]

oldR[d] oldR[d-1]

HopBits

PatternBitmask

HopQueueRegisterx+1

R[d]

HopQueueRegisterx-1

oldR[d-1] oldR[d]

R[d]

[*] D. Senol Cali et al. "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for
Genome Sequence Analysis” (MICRO’20)

https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf

Damla Senol Cali

SeGraM Module (1 x per HBM2E stack)SeGraM Module (1 x per HBM2E stack)

High Bandwidth Memory (HBM2E) Stack

Host

. . .

Overall System Design of SeGraM

56

. . .

High Bandwidth Memory (HBM2E) Stack

SeGraM
Acc.

SeGraM
Acc.

SeGraM
Acc.

SeGraM
Acc.

SeGraM
Acc.

. . .Host

MS

BA

MS

BA

MS

BA

MS

BA

MS

BA

X 4

CH0 CH1 CH2 CH6 CH7

Damla Senol Cali

Use Cases of SeGraM

(1) Sequence-to-Graph

Mapping

(2) Sequence-to-Graph

Alignment

(3) Sequence-to-Sequence

Alignment

(4) Seeding

57

MS BA

MS or
Other BA

BA

MS

MS or
Other

BA or
Other

Damla Senol Cali

Evaluation Methodology

❑ Performance, Area and Power Analysis:

o Synthesized SystemVerilog models of the MinSeed and BitAlign

accelerator datapaths

o Simulation- and spreadsheet-based performance modeling

❑ Baseline Comparison Points:

o GraphAligner, vg, and HGA for sequence-to-graph mapping

o PaSGAL for sequence-to-graph alignment

o Darwin, GenAx, and GenASM for sequence-to-sequence alignment

❑ Datasets:

o Graph-based reference: GRCh38 + 7 VCF files for HG001-007

o Simulated datasets for both short and long reads

58

Damla Senol Cali

Key Results – Area & Power

59

❑ Based on our synthesis of MinSeed and BitAlign accelerator datapaths

using the Synopsys Design Compiler with a 28nm process (@ 1GHz):

Damla Senol Cali

Key Results (cont’d.)

60

(1) Sequence-to-Graph (S2G) Mapping

❑ 5.9×/106× speedup, 4.1×/3.0× less power than GraphAligner

for long and short reads, respectively (state-of-the-art SW)

❑ 3.9×/742× speedup, 4.4×/3.2× less power than vg

for long and short reads, respectively (state-of-the-art SW)

(2) Sequence-to-Graph (S2G) Alignment

❑ 41×–539× speedup over PaSGAL with AVX-512 support (state-of-the-art SW)

(3) Sequence-to-Sequence (S2S) Alignment

❑ 1.2×/4.8× higher throughput than GenASM and GACT of Darwin

for long reads (state-of-the-art HW)

❑ 1.3×/2.4× higher throughput than GenASM and SillaX of GenAX

for short reads (state-of-the-art HW)

Damla Senol Cali

Additional Details in the Paper

❑ Details of the pre-processing steps of SeGraM

❑ Details of the MinSeed and BitAlign algorithms

❑ Details of the MinSeed and BitAlign hardware designs

❑ Bottleneck analysis of the existing tools

❑ Evaluation methodology details

(datasets, baselines, performance model)

❑ Additional results for the three evaluated use cases

❑ Sources of improvements in SeGraM

❑ Comparison of GenASM and SeGraM

61

Damla Senol Cali

Summary of SeGraM
❑ SeGraM: First universal algorithm/hardware co-designed genomic

mapping accelerator that supports:

▪ Sequence-to-graph (S2G) & sequence-to-sequence (S2S) mapping

▪ Short & long reads

o MinSeed: First minimizer-based seeding accelerator

o BitAlign: First (bitvector-based) S2G alignment accelerator

❑ SeGraM supports multiple use cases:

o End-to-end S2G mapping

o S2G alignment

o S2S alignment

o Seeding

❑ SeGraM outperforms state-of-the-art software & hardware solutions

62

Damla Senol Cali

SeGraM [ISCA 2022] – Paper & Talk

63

ISCA’22 Paper ISCA’22 Talk

Damla Senol Cali

SeGraM – Source Code & Datasets

64

https://github.com/CMU-SAFARI/SeGraM

https://github.com/CMU-SAFARI/SeGraM

Damla Senol Cali, Ph.D.
https://damlasenolcali.github.io/

damlasenolcali@gmail.com

Staff Software Engineer, Hardware Acceleration

BIO-Arch Workshop @ RECOMB 2023
April 14, 2023

Accelerating Genome Sequence Analysis via

Efficient Hardware/Algorithm Co-Design

mailto:damlasenolcali@gmail.com
mailto:damlasenolcali@gmail.com

Backup Slides
(BiB Paper)

Damla Senol Cali

Read Mapping, method of aligning the
reads against the reference genome in

order to detect matches and variations.

ACGTACCCCGT

GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT ACGACGTAGCT

AAAAAAAAAAACGAGCGGGT Reads

De novo Assembly, method of
merging the reads in order to construct

the original sequence.

Reference
Genome

Original
Sequence

Genome Sequence Analysis

67

Reads Mapped Reads Reads Assembled Reads

Damla Senol Cali

Genome Assembly Pipeline Using Long Reads

Basecalling
(Translates signal data into bases: A,C,G,T)

Read-to-Read Overlap Finding
(Finds pairwise read alignments for each pair of read)

Assembly
(Traverses the overlap graph & constructs the draft assembly)

Read Mapping
(Maps the reads to the draft assembly)

Raw signal
data

Assembly

DNA reads

Overlaps

Draft assembly

Improved
assembly

Polishing
(Polishes the draft assembly & increases the accuracy)

Mappings of
reads against
draft assembly

❑ With the emergence of long read sequencing technologies, de novo assembly

becomes a promising way of constructing the original genome.

68

Damla Senol Cali

Our Contributions

❑ Analyze the tools in multiple dimensions: accuracy,

performance, memory usage, and scalability

❑ Reveal new bottlenecks and trade-offs

❑ First study on bottleneck analysis of nanopore sequence

analysis pipeline on real machines

❑ Provide guidelines for practitioners

❑ Provide guidelines for tool developers

69

Damla Senol Cali

Key Findings
❑ Laptops are becoming a popular platform for running genome assembly

tools, as the portability of a laptop makes it a good fit for in-field analysis

o Greater memory constraints
o Lower computational power
o Limited battery life

❑ Memory usage is an important factor that greatly affects the performance
and the usability of the tool

o Data structure choices that increase the memory requirements
o Algorithms that are not cache-efficient
o Not keeping memory usage in check with the number of threads

❑ Scalability of the tool with the number of cores is an important requirement.
However, parallelizing the tool can increase the memory usage

o Not dividing the input data into batches
o Not limiting the memory usage of each thread
o Dividing the dataset instead of the computation between simultaneous threads

70

Backup Slides
(GenASM)

Damla Senol Cali

Example for the Bitap Algorithm

72

Damla Senol Cali

GenASM Algorithm

❑ GenASM-DC Algorithm:

o Modified Bitap for Distance Calculation

o Extended for efficient long read support

o Besides bit-parallelism that Bitap has, extended for parallelism:

▪ Loop unrolling

▪ Text-level parallelism

❑ GenASM-TB Algorithm:

o Novel Bitap-compatible TraceBack algorithm

o Walks through the intermediate bitvectors (match, deletion,

substitution, insertion) generated by GenASM-DC

o Follows a divide-and-conquer approach to decrease the

memory footprint

73

Damla Senol Cali

Loop Unrolling in GenASM-DC

74

Cycle#
Thread1

R0/4
Thread2

R1/5
Thread3

R2/6
Thread4

R3/7

#1 T0-R0 − − −

#2 T1-R0 T0-R1 − −

#3 T2-R0 T1-R1 T0-R2 −

#4 T3-R0 T2-R1 T1-R2 T0-R3

#5 T0-R4 T3-R1 T2-R2 T1-R3

#6 T1-R4 T0-R5 T3-R2 T2-R3

#7 T2-R4 T1-R5 T0-R6 T3-R3

#8 T3-R4 T2-R5 T1-R6 T0-R7

#9 − T3-R5 T2-R6 T1-R7

#10 − − T3-R6 T2-R7

#11 − − − T3-R7

target cell (Rd)
cells target cell depends on (oldRd, Rd-1, oldRd-1)

data written to memory

data read from memory

Cycle#
Thread1

R0/1/2/..

#1 T0-R0
… …

#8 T0-R7

#9 T1-R0

… …

#16 T1-R7

#17 T2-R0

… …

#24 T2-R7

#25 T3-R0
… …

#32 T3-R7

Damla Senol Cali

Traceback Example with GenASM-TB

75

Deletion Example (Text Location=0)

Text[0]: C Text[1]: G Text[2]: T Text[3]: G Text[4]: A

Match(C) Del(–) Match(T) Match(G) Match(A)
<3,0,1> <2,1,1> <2,2,0> <1,3,0> <0,4,0>

R0- :
R1-M : 0111

R0- :
R1-D : 1011

R0-M : 1011
R1- :

R0-M : 1101
R1- :

R0-M : 1110
R1- :

Substitution Example (Text Location=1)

Text[1]: G Text[2]: T Text[3]: G Text[4]: A

Subs(C) Match(T) Match(G) Match(A)
<3,1,1> <2,2,0> <1,3,0> <0,4,0>

R0- :
R1-S : 0110

R0-M : 1011
R1- :

R0-M : 1101
R1- :

R0-M : 1110
R1- :

Insertion Example (Text Location=2)

Text[–] Text[2]: T Text[3]: G Text[4]: A

Ins(C) Match(T) Match(G) Match(A)
<3,2,1> <2,2,0> <1,3,0> <0,4,0>

R0- :
R1-I : 0110

R0-M : 1011
R1- :

R0-M : 1101
R1- :

R0-M : 1110
R1- :

Damla Senol Cali

Key Results – Use Case 1

(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate

reference regions

(2) Pre-Alignment Filtering for Short Reads

oQuickly identify and filter out the unlikely candidate

reference regions for each read

(3) Edit Distance Calculation

oMeasure the similarity or distance between two sequences

76

Damla Senol Cali

Key Results – Use Case 1 (Long Reads)

77

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

PacBio - 10% PacBio - 15% ONT - 10% ONT - 15% Average

T
h

ro
u

g
h

p
u

t
(r

ea
d

s/
se

c)

BWA-MEM (12-thread) GenASM (w/ BWA-MEM)

Minimap2 (12-thread) GenASM (w/ Minimap2)

GenASM achieves 648× and 116× speedup over

12-thread runs of BWA-MEM and Minimap2,

while reducing power consumption by 34× and 37×

648×

116×

SW

Damla Senol Cali

Key Results – Use Case 1 (Long Reads)

78

1.E+00

1.E+02

1.E+04

1.E+06

1Kbp 2Kbp 3Kbp 4Kbp 5Kbp 6Kbp 7Kbp 8Kbp 9Kbp 10Kbp Average

T
h

ro
u

g
h

p
u

t
(r

ea
d

s/
se

c)

GACT (Darwin) GenASM

GenASM provides 3.9× better throughput,

6.6× the throughput per unit area, and

10.5× the throughput per unit power,

compared to GACT of Darwin

3.9×

HW

Damla Senol Cali

1E+00
1E+01
1E+02
1E+03
1E+04
1E+05
1E+06
1E+07
1E+08

Illumina-100bp Illumina-150bp Illumina-250bp Average

T
h

ro
u

g
h

p
u

t
(r

ea
d

s/
se

c)

BWA-MEM (12-thread) GenASM (w/ BWA-MEM)

Minimap2 (12-thread) GenASM (w/ Minimap2)

Key Results – Use Case 1 (Short Reads)

79

GenASM achieves 111× and 158× speedup over

12-thread runs of BWA-MEM and Minimap2,

while reducing power consumption by 33× and 31×

111×
158×

GenASM provides 1.9× better throughput and

uses 63% less logic area and 82% less logic power,

compared to SillaX of GenAx

HW

SW

Damla Senol Cali

Key Results – Use Case 2

80

(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate

reference regions

(2) Pre-Alignment Filtering for Short Reads

oQuickly identify and filter out the unlikely candidate

reference regions for each read

(3) Edit Distance Calculation

oMeasure the similarity or distance between two sequences

Damla Senol Cali

Key Results – Use Case 2
❑ Compared to Shouji:

o 3.7× speedup

o 1.7× less power consumption

o False accept rate of 0.02% for GenASM vs. 4% for Shouji

o False reject rate of 0% for both GenASM and Shouji

81

GenASM is more efficient in terms of

both speed and power consumption,

while significantly improving the accuracy

of pre-alignment filtering

HW

Damla Senol Cali

Key Results – Use Case 3

82

(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate

reference regions

(2) Pre-Alignment Filtering for Short Reads

oQuickly identify and filter out the unlikely candidate

reference regions for each read

(3) Edit Distance Calculation

oMeasure the similarity or distance between two sequences

Damla Senol Cali

1.00E+00

1.00E+02

1.00E+04

1.00E+06

1.00E+08

99% 97% 94% 90% 80% 70% 60%

E
x

e
cu

ti
o

n
 t

im
e

(µ
s)

Similarity between two sequences

Edlib (100 Kbp) GenASM (100 Kbp) Edlib (1 Mbp) GenASM (1 Mbp)

Key Results – Use Case 3

83

GenASM provides 146 – 1458× and 627 – 12501× speedup,

while reducing power consumption by 548× and 582×

for 100Kbp and 1Mbp sequences, respectively, compared to Edlib

GenASM provides 9.3 – 400× speedup over ASAP,

while consuming 67× less power

146×
1458×

627×
12501×

HW

SW

Damla Senol Cali

Sources of Improvement in GenASM
❑Very simple computations GenASM performs

❑Divide-and-conquer approach we follow, which makes our
design efficient for both short and long reads despite their
different error profiles

❑Very high degree of parallelism obtained with the help of:

o Specialized compute units, dedicated SRAMs for both
GenASM-DC and GenASM-TB, and

o Vault-level parallelism provided by processing in the logic
layer of 3D-stacked memory

84

Backup Slides
(SeGraM)

Damla Senol Cali

SeGraM – Graph Structure

86

Damla Senol Cali

SeGraM – Index Structure

87

Damla Senol Cali

SeGraM – Selection of #Buckets

88

Damla Senol Cali

Minimizers

89

Damla Senol Cali

MinSeed – Region Calculation

90

Damla Senol Cali

BitAlign Algorithm

91

Damla Senol Cali

BitAlign – Hop Length Selection

92

Damla Senol Cali

BitAlign – HopBits

93

Damla Senol Cali

Sources of Improvement
❑ Co-design approach for both seeding and alignment:

o Efficient and hardware-friendly algorithms for seeding and for

alignment

o Eliminating the data transfer bottleneck between the seeding and

alignment steps of the genome sequence analysis pipeline, by

placing their individual accelerators (MinSeed and BitAlign)

adjacent to each other

o Pipelining of the two accelerators within a SeGraM accelerator,

which allows us to completely hide the latency of MinSeed

❑Overcoming the high cache miss rates observed from the baseline

tools by carefully designing and sizing the on-chip scratchpads and

the hop queue registers and matching the rate of computation for

the logic units with memory bandwidth and memory capacity

94

Damla Senol Cali

Sources of Improvement (cont’d.)
❑Addressing the DRAM latency bottleneck by taking advantage of

the natural channel subdivision exposed by HBM and eliminating any

inter-accelerator interference-related latency in the memory system

❑ Scaling linearly across three dimensions:

o Within a single BitAlign accelerator, by incorporating processing

elements (i.e., iteration-level parallelism),

o Executing multiple seeds in parallel by using pipelined execution

with the help of our double buffering approach (i.e., seed-level

parallelism), and

o Processing multiple reads concurrently without introducing inter-

accelerator memory interference with the help of multiple HBM

stacks that each contain the same content (i.e., read-level

parallelism)

95

Damla Senol Cali

Key Results – SeGraM with Long Reads

96

SeGraM provides 5.9× and 3.9× throughput improvement

over GraphAligner and vg,

while reducing the power consumption by 4.1× and 4.4×

Damla Senol Cali 97

Key Results – SeGraM with Short Reads

SeGraM provides 106× and 742× throughput improvement

over GraphAligner and vg,

while reducing the power consumption by 3.0× and 3.2×

Damla Senol Cali 98

BitAlign provides 41×-539× speedup over PaSGAL

Key Results – BitAlign (S2G Alignment)

Damla Senol Cali 99

Key Results – BitAlign (S2S Alignment)

❑ BitAlign can also be used for sequence-to-sequence alignment

o The cost of more functionality: extra hop queue registers

o We do not sacrifice any performance

❑ For long reads (over GACT of Darwin and GenASM):

o 4.8× and 1.2× throughput improvement,

o 2.7× and 7.5× higher power consumption, and

o 1.5× and 2.6× higher area overhead

❑ For short reads (over SillaX of GenAx and GenASM):

o 2.4× and 1.3× throughput improvement

Damla Senol Cali, Ph.D.
https://damlasenolcali.github.io/

damlasenolcali@gmail.com

Staff Software Engineer, Hardware Acceleration

BIO-Arch Workshop @ RECOMB 2023
April 14, 2023

Accelerating Genome Sequence Analysis via

Efficient Hardware/Algorithm Co-Design

mailto:damlasenolcali@gmail.com
mailto:damlasenolcali@gmail.com

	Slide 1: Accelerating Genome Sequence Analysis via Efficient Hardware/Algorithm Co-Design
	Slide 2: Genome Sequencing
	Slide 3: Current State of Sequencing
	Slide 4: Current State of Sequencing (cont’d.)
	Slide 5: Our Goal & Approach
	Slide 6: Research Contributions
	Slide 7: Nanopore Sequencing & Tools [BiB 2018]
	Slide 8: Key Findings
	Slide 9: Research Contributions
	Slide 10: Read Mapping Pipeline
	Slide 11: GSA with Read Mapping
	Slide 12: Approximate String Matching
	Slide 13: Bitap Algorithm
	Slide 14: Limitations of Bitap
	Slide 15: Bitap Algorithm (cont’d.)
	Slide 16: Bitap Algorithm (cont’d.)
	Slide 17: Limitations of Bitap
	Slide 18: Bitap Algorithm (cont’d.)
	Slide 19: Limitations of Bitap
	Slide 20: GenASM: ASM Framework for GSA
	Slide 21: GenASM Hardware Design
	Slide 22: GenASM Hardware Design
	Slide 23: GenASM Hardware Design
	Slide 24: GenASM-DC: Hardware Design
	Slide 25: GenASM-TB: Hardware Design
	Slide 26: Use Cases of GenASM
	Slide 27: Evaluation Methodology
	Slide 28: Evaluation Methodology (cont’d.)
	Slide 29: Evaluation Methodology (cont’d.)
	Slide 30: Evaluation Methodology (cont’d.)
	Slide 31: Key Results – Area and Power
	Slide 32: Key Results – Area and Power
	Slide 33: Key Results (cont’d.)
	Slide 34: Additional Details in the Paper
	Slide 35: Summary of GenASM
	Slide 36: GenASM [MICRO 2020] – Paper & Talk
	Slide 37: GenASM – Source Code
	Slide 38: Research Contributions
	Slide 39: Genome Sequence Analysis
	Slide 40: Genome Graphs
	Slide 41: Genome Graphs
	Slide 42: Genome Graphs
	Slide 43: Genome Graphs
	Slide 44: Genome Graphs
	Slide 45: Genome Graphs
	Slide 46: Genome Graphs
	Slide 47: Sequence-to-Graph Mapping Pipeline
	Slide 48: S2S vs. S2G Alignment
	Slide 49: S2S vs. S2G Alignment
	Slide 50: Analysis of State-of-the-Art Tools
	Slide 51: SeGraM: Universal Genomic Mapping Accelerator
	Slide 52: SeGraM Hardware Design
	Slide 53: SeGraM Hardware Design
	Slide 54: MinSeed HW
	Slide 55: BitAlign HW
	Slide 56: Overall System Design of SeGraM
	Slide 57: Use Cases of SeGraM
	Slide 58: Evaluation Methodology
	Slide 59: Key Results – Area & Power
	Slide 60: Key Results (cont’d.)
	Slide 61: Additional Details in the Paper
	Slide 62: Summary of SeGraM
	Slide 63: SeGraM [ISCA 2022] – Paper & Talk
	Slide 64: SeGraM – Source Code & Datasets
	Slide 65: Accelerating Genome Sequence Analysis via Efficient Hardware/Algorithm Co-Design
	Slide 66: Backup Slides (BiB Paper)
	Slide 67: Genome Sequence Analysis
	Slide 68: Genome Assembly Pipeline Using Long Reads
	Slide 69: Our Contributions
	Slide 70: Key Findings
	Slide 71: Backup Slides (GenASM)
	Slide 72: Example for the Bitap Algorithm
	Slide 73: GenASM Algorithm
	Slide 74: Loop Unrolling in GenASM-DC
	Slide 75: Traceback Example with GenASM-TB
	Slide 76: Key Results – Use Case 1
	Slide 77: Key Results – Use Case 1 (Long Reads)
	Slide 78: Key Results – Use Case 1 (Long Reads)
	Slide 79: Key Results – Use Case 1 (Short Reads)
	Slide 80: Key Results – Use Case 2
	Slide 81: Key Results – Use Case 2
	Slide 82: Key Results – Use Case 3
	Slide 83: Key Results – Use Case 3
	Slide 84: Sources of Improvement in GenASM
	Slide 85: Backup Slides (SeGraM)
	Slide 86: SeGraM – Graph Structure
	Slide 87: SeGraM – Index Structure
	Slide 88: SeGraM – Selection of #Buckets
	Slide 89: Minimizers
	Slide 90: MinSeed – Region Calculation
	Slide 91: BitAlign Algorithm
	Slide 92: BitAlign – Hop Length Selection
	Slide 93: BitAlign – HopBits
	Slide 94: Sources of Improvement
	Slide 95: Sources of Improvement (cont’d.)
	Slide 96: Key Results – SeGraM with Long Reads
	Slide 97: Key Results – SeGraM with Short Reads
	Slide 98: Key Results – BitAlign (S2G Alignment)
	Slide 99: Key Results – BitAlign (S2S Alignment)
	Slide 100: Accelerating Genome Sequence Analysis via Efficient Hardware/Algorithm Co-Design

