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Lack of Specialized Compute Capability
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Improving Processing via Accelerators

GateKeeper [Bioinformatics 2017]

Shouji [Bioinformatics 2019]
MAGNET [AACBB 2018]

SneakySnake [Bioinformatics’20]

Specialized Genomic Accelerators 
(GPU, FPGA) 

Scrooge [Bioinformatics 2023]

MicroprocessorMain MemoryStorage (SSD/HDD)Sequencing Machine

GateKeeper-GPU [IPDPSW 2021]
RUBICON [arXiv 2022]



Data Movement Bottleneck

MicroprocessorMain MemoryStorage (SSD/HDD)Sequencing Machine

Data Movement

Data movement is a major bottleneck
in modern computer architectures

Over 60% of the total system energy is spent on data movement

A. Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS, 2018

power-hungry

bandwidth-limited



Improving Processing via Paradigm Shift

GateKeeper [Bioinformatics 2017]

Shouji [Bioinformatics 2019]
MAGNET [AACBB 2018]

SneakySnake [Bioinformatics’20]

AIM [Bioinformatics 2023]

SneakySnake [IEEE Micro 2021]

Specialized Genomic Accelerators 
(GPU, FPGA) 

GRIM-Filter [BMC Genomics 2018]

Scrooge [Bioinformatics 2023]

Near-memory/In-memory 
Genomic Accelerators

MicroprocessorMain MemoryStorage (SSD/HDD)Sequencing Machine

GenASM [MICRO 2020]

GenStore [ASPLOS 2022]

In-storage Sequence Alignment

SeGraM [ISCA 2022]
GenPIP [MICRO 2022]

GateKeeper-GPU [IPDPSW 2021]
RUBICON [arXiv 2022]

Improving performance and energy efficiency 
by 1-3 orders of magnitude



Our Goal
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To further reduce the execution time

and memory/storage footprint of genomic 

analyses via sparsified genomics



Sparsifying Genomic Data
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Sparsifying Genomic Data
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A_C_T_A_C_T_A_C_T_A_C_T_A_C_T_A

Still Exact Match 

N Bytes
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Sparsifying Genomic Data Is Challenging
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How It Works?
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Genome-on-Diet Steps
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Compressed Indexing

Pattern Alignment

Compressed Seeding

Location Voting

Sequence Alignment



Step 1: Compressed Indexing
n We use a user-defined binary pattern to identify the location and 

number of the to-be-dropped bases.
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Index
(e.g., hash table)

A C C C T A G C C C T A A G

1 0 1 0 1 0 1 0 1 0 1 0 1 0

A C T G C T A

A C T G

C T G C

T G C T

G C T A

Genome sequence:

Diet pattern:

Patterned genome:

k-mers:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 3 5 7 9 11 13



Step 2: Pattern Alignment
n Deciding where in the read to apply the pattern essential for the 

correctness of Genome-on-Diet
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A C T G

C T G C

1 0 1 0 1 0 1 0 1 0 1 0 1 0

A C T G C T A

G A C C C T A G C C C T A A

2>0? thus the correct
shift amount = 1

G A C C C T A G C C C T A A

1 0 1 0 1 0 1 0 1 0 1 0 1 0

G C C A C C A

G C C A

C C A C

Read sequence:

Diet pattern 0:

Patterned read 0:

k-mers:

Shift amount = 1

✓

✕

✓

✕ Don’t exist in the index

Exist in the index



Step 3: Compressed Seeding
n Use the calculated shift amount to correctly extract seeds from 

the read sequence.
n Now both the reference genome and the read are half in length

and their seeds can be still correctly matched
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A C T G

C T G C

1 0 1 0 1 0 1 0 1 0 1 0 1 0

A C T G C T A

G A C C C T A G C C C T A ARead sequence:

Diet pattern:

Patterned read:

k-mers:



Step 4: Location Voting
n Seeds are sparsified and thus cannot be directly chained, instead 

to detect mapping locations we use the number of matching 
seeds in a region
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✕

Genome sequence:

Read sequence:
Primary

Supplementary
Secondary

Chr 1: Chr 2:



Step 5: Sequence Alignment
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Dynamic 
programming 

matrix



CPU Implementation

Genome-on-Diet is implemented on top of minimiap2
(2.24-r1122 version as of 11 November 2022)
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Introducing Four Optimization Strategies
n Accelerating Indexing & Seeding with SIMD Instructions

q Calculating 8 (512/(32*2)) overlapping k-mers along with their hash 
values in parallel

n Sorting Seed Locations 
q Merge sort instead of Radix and Heap sort algorithms

n Rescuing Mapping Location
q Based on two voting thresholds

n Handling Exactly-Matching Short Reads
q It is observed that 80% of short reads usually exactly match to the 

reference genome
27



Applications of Sparsified Genomics
n Applications that compare sequences for similarity

q Genome similarity & genomic distance
q Prealignment filtering
q Containment search

n Applications that generate huge index
q Taxonomic profiling
q Pangenomics

n Applications that require building index during the analysis
q Read mapping for many assembly versions of the same species
q Identifying de novo variations by comparing sequencing reads of family 

members
q Identifying somatic variations by comparing reads sequenced from both 

healthy and tumor cells of the same patient
n And many more …

28

Indexing and seeding time account for

Read  Mapping10%-27% 
Taxonomic Profiling97% 

Index can be up to 21.25x larger in size than 
a single (2-bit encoded) indexed genome

They may or may not 
require building index



1000101001

Genome-on-Diet vs. Spaced Seeding?
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ACCCTAACCCTAACCCTAACCCTAA..

Spaced Seeding:

Genome-on-Diet:

ACCCTAACCCTAACCCTAACCCTAA..
A___T_A__C
C___A_C__T 
C___A_C__A
C___C_C__A
T___C_T__C
A___C_A__C

Reduced execution time
Reduced peak memory footprint
Reduced number of seeds
Each seed may have its own pattern

Increased execution time
No effect on peak memory footprint
No effect on the number of seeds
All seeds have the same pattern

ACCCTAACCC
CCCTAACCCT 
CCTAACCCTA
CTAACCCTAA
TAACCCTAAC
AACCCTAACC

100010100110001010011000101001
A___T_A__CT___C_T__CC___A..
A___T_A__C

T_A__CT
A__CT___C
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Genome-on-Diet provides the same or higher sensitivity
compared to spaced seeding, while Genome-on-Diet is 

always faster and more memory efficient



Evaluation Results
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Great Benefits by Sparsified Genomics

n Genome-on-Diet is 1.13-6.28x faster and has 2.1x smaller 
memory footprint, and 2x smaller index size compared to 
minimap2, for performing read mapping. 

n Genome-on-Diet is 72.7-75.88x faster and 723.3x more storage-
efficient than KMC3 combined with CMash, for performing 
containment search.

n Genome-on-Diet is 54.15-61.88x faster and 720x more storage-
efficient than Metalign, for performing taxonomic profiling of 
metagenomic samples.
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Read Mapping

Containment Search

Metagenomic Profiling



Effect of Using Different Patterns
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For performing both containment indexing and k-mer intersection 

The performance scales linearly with the number of zeros
determined in the pattern sequence



See Our Paper for Many More Analyses and Results
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Genome-on-Diet performance is not affected by 
the value of minimizer window.

Location voting step is much faster than seed chaining
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Genome-on-Diet leads to the detection of a higher number 
of SNPs, indels, and SVs compared to minimap2

See Our Paper for Many More Analyses and Results



Preprint and Source Code
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https://arxiv.org/abs/2211.08157

https://github.com/CMU-SAFARI/Genome-on-Diet

https://arxiv.org/abs/2211.08157
https://github.com/CMU-SAFARI/Genome-on-Diet
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