
Filter Before You Parse
Accelerating Any Sequence Aligner

Mohammed Alser, PhD
@mealser

RECOMB 2023 - Bio-Arch
14 April 2023

Pairwise Sequence Alignment

2

n Calculating the best arrangement of matches and edits (i.e.,
insertions, deletions, or substitutions) needed to make one
sequence exactly matches the other one.

For 30K long sequence pairs, the DP table size = 900MB

For 300K long sequence pairs, the DP table size = 90GB

Partial Computation of DP Table
n Different algorithms compute the DP table differently.

3
Koerkamp+, "Exact global alignment using A* with seed heuristic and match pruning”, bioRxiv, 2022

Alignment is Major Bottleneck

4

ONT FASTQ size: 103MB (151 reads), Mean length: 356,403 bp, std: 173,168 bp, longest length: 817,917 bp

KSW2
45%

Seed
Chaining

16%

Sorting
Seeds
29%

Collect
Matching
Seeds…

Collect Minimizers
2%

>60%
of the read mapper’s

execution time is spent in
sequence alignment

minimap2

Goal: Minimizing Alignment Time

Sequence Alignment is expensive

Goal: Accelerate ANY sequence aligner
by reducing the need for

dynamic programming algorithms

5

Key Idea

6

Genomic Strings

Similar Strings
Dissimilar

Strings

Find number, location, and
type of differences?

Ignore them if the number of
differences exceeds a

threshold.

EXPE
NSIV

E!

1. Filter out most of incorrect mappings.
2. Preserve all correct mappings.
3. Do it quickly.

Ideal Filtering Algorithm

7

Potential
Mapping
locations

Sequence
Alignment

How It Works?

8

SneakySnake [Bioinformatics 2020]

9

Mohammed Alser, Taha Shahroodi, Juan-Gomez Luna, Can Alkan, and Onur Mutlu,
"SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment Filter for
CPUs, GPUs, and FPGAs"
Bioinformatics, 2020.
[Source Code]
[Online link at Bioinformatics Journal]

https://people.inf.ethz.ch/omutlu/pub/SneakySnake_UniversalGenomePrealignmentFilter_bioinformatics20.pdf
https://people.inf.ethz.ch/omutlu/pub/SneakySnake_UniversalGenomePrealignmentFilter_bioinformatics20.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/CMU-SAFARI/SneakySnake
https://doi.org/10.1093/bioinformatics/btaa1015

SneakySnake

10

n Key observation:
q Correct alignment is a sequence of non-overlapping long matches.

Dot plot, dot matrix
(Lipman and Pearson, 1985)

SneakySnake

11

n Key observation:
q Correct alignment is a sequence of non-overlapping long matches

n Key idea:
q Approximate edit distance calculation is similar to Single Net Routing

problem in VLSI chip
VLSI chip layout

SneakySnake Walkthrough

12

Building Neighborhood Map Finding the Optimal Routing Path Examining the Snake Survival

E = 3

SneakySnake Walkthrough

13

Building Neighborhood Map Finding the Optimal Routing Path Examining the Snake Survival

E = 3

EN
TR

A
N

CE

EX
IT

SneakySnake Walkthrough

14

Building Neighborhood Map Finding the Optimal Routing Path Examining the Snake Survival

3

EX
IT

210

0

0

4

0

2

0

0

EN
TR

A
N

CE

0

0

0

4

1

0

1

0

1

1

0

1

0

0

SneakySnake Walkthrough

15

Building Neighborhood Map Finding the Routing Travel Path Examining the Snake Survival

This is what you actually need to build and it
can be done on-the-fly!

EN
TR

A
N

CE

EX
IT

3

Evaluation Results

16

Filtering Accuracy

19
Alser, "Accelerating the Understanding of Life's Code Through Better Algorithms and
Hardware Design”, arXiv preprint arXiv:1910.03936, 2019.

https://arxiv.org/abs/1910.03936
https://arxiv.org/abs/1910.03936

Long Read Mapping (SneakySnake vs KSW2)

21

10K bp reads 100K bp reads

Accelerating WFA (and BiWFA)
n Integrating SneakySnake with WFA accelerates end-to-end

sequence alignment by about 4.2-9.6x for different sequence
lengths.

22

0
1
2
3
4
5
6
7
8
9

10

100 250 1000 10000

Sp
ee

du
p

Sequence lengths

WFA SS+WFA

Key Results of SneakySnake

23

q SneakySnake is up to four orders of magnitude more accurate than
Shouji (Bioinformatics’19) and GateKeeper (Bioinformatics’17)

q Using short reads, SneakySnake accelerates Edlib (Bioinformatics’17) and
Parasail (BMC Bioinformatics’16) by
n up to 37.7× and 43.9× (>12× on average), on CPUs
n up to 413× and 689× (>400× on average) with FPGA/GPU acceleration

q Using long reads, SneakySnake accelerates Parasail and KSW2 by
140.1× and 17.1× on average, respectively, on CPUs

Can We Do Better?

Alleviating
Data Movement

Bottlenecks

24

Near-memory Pre-alignment Filtering

26

Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, Juan
Gomez-Luna, Henk Corporaal, Onur Mutlu,
“FPGA-Based Near-Memory Acceleration of Modern Data-Intensive Applications“
IEEE Micro, 2021.
[Source Code]

https://arxiv.org/pdf/2106.06433.pdf
https://github.com/CMU-SAFARI/SneakySnake/tree/master/SneakySnake-HLS-HBM

Heterogeneous System: CPU+FPGA

27

POWER9 AC922

HBM-based AD9H7 board

CAPI2

Source: AlphaData

Source: IBM

Source: AlphaData

DDR4-based AD9V3 board

We evaluate two POWER9+FPGA systems:
1. HBM-based AD9H7 board: Xilinx Virtex Ultrascale+™XCVU37P-2
2. DDR4-based AD9V3 board: Xilinx Virtex Ultrascale+™XCVU3P-2

FPGA + HBM on the same package substrate

Key Results of Near-memory SneakySnake

28

Near-memory pre-alignment filtering improves performance and
energy efficiency by 27.4× and 133×, respectively,
over a 16-core (64 hardware threads) IBM POWER9 CPU

GRIM-Filter
n Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,

Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-
in-Memory Technologies"
to appear in BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), Yokohama,
Japan, January 2018.
arxiv.org Version (pdf)

29

http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf

GRIM-Filter in 3D-Stacked DRAM

n Each DRAM layer is organized as an array of banks
q A bank is an array of cells with a row buffer to transfer data

30

DRAM	Layers

Logic	Layer

TSVs

Bank

Row	Buffer

Bank
Row	0:	AAAAA
Row	1:	AAAAC
Row	2:	AAAAG

.

.

.
Row	R–1:	TTTTT

.	.	.

Vault

...

GRIM-Filter: Bitvectors

Reference
Genome

AAAAA
AAAAC
AAAAG
AAAAT
.

CCCCT
.
.
.
.

GCATG
.

TTGCA
.

TTTTT

1
1
0
0
.
1
.
.
.
.
1
.
1
.
0

0
1
0
.
1
.
1
.
1
.
1
.
.
.
0

AAAAA
AAAAC
AAAAG

.
AGAAA

.
GAAAA

.
GACAG

.
GCATG

.

.

.
TTTTT

� � � �

b1 b2

b2:	bitvector
for	bin2

1
0
0
0
1
1
1
.
.
.
.
1
1
1
0

0
0
1
0
1
0
1
.
.
.
.
0
1
1
0

1
0
1
1
1
1
1
.
.
.
.
1
0
0
0

AAAAA
AAAAC
AAAAG
AAAAT
AAACA
AAACC
AAACG

.

.

.

.
TTTTA
TTTTC
TTTTG
TTTTT

*	t	=	number	of	bins

bt-2 bt-1	bt *

Le
ng
th
	=
	4
5

GACAG
exists	in	
2nd bin

TTTTT	
doesn’t	
exist	in	
2nd bin

bin2

bin3
AAAAACCCCTGCCTTGCATGTAGAAAACTTGACAGGAACTTTTTATCGCA

bin1

tokens

(a)

(b)

���

bin4

AAAAA
AAAAC
AAAAG
AAAAT
.

CCCCT
.
.
.
.

GCATG
.

TTGCA
.

TTTTT

1
1
0
0
.
1
.
.
.
.
1
.
1
.
0

b1

tokens

31

AAAAC
exists in
bin 1

CCCCT
doesn’t
exist in
bin 1

q Represent each bin with a bitvector that
holds the occurrence of all permutations
of a small string (token) in the bin

q To account for matches that straddle bins,
we employ overlapping bins
n A read will now always completely fall within

a single bin

GRIM-Filter: Bitvectors

Storing all bitvectors
requires 𝟒𝒏 ∗ 𝒕 bits
in memory,
where
t = number of bins
&
n = token length.

For bin size ~200,
and n = 5,
memory footprint
~3.8 GB

Reference
Genome

AAAAA
AAAAC
AAAAG
AAAAT
.

CCCCT
.
.
.
.

GCATG
.

TTGCA
.

TTTTT

1
1
0
0
.
1
.
.
.
.
1
.
1
.
0

0
1
0
.
1
.
1
.
1
.
1
.
.
.
0

AAAAA
AAAAC
AAAAG

.
AGAAA

.
GAAAA

.
GACAG

.
GCATG

.

.

.
TTTTT

� � � �

b1 b2

b2:	bitvector
for	bin2

1
0
0
0
1
1
1
.
.
.
.
1
1
1
0

0
0
1
0
1
0
1
.
.
.
.
0
1
1
0

1
0
1
1
1
1
1
.
.
.
.
1
0
0
0

AAAAA
AAAAC
AAAAG
AAAAT
AAACA
AAACC
AAACG

.

.

.

.
TTTTA
TTTTC
TTTTG
TTTTT

*	t	=	number	of	bins

bt-2 bt-1	bt *

Le
ng
th
	=
	4
5

GACAG
exists	in	
2nd bin

TTTTT	
doesn’t	
exist	in	
2nd bin

bin2

bin3
AAAAACCCCTGCCTTGCATGTAGAAAACTTGACAGGAACTTTTTATCGCA

bin1

tokens

(a)

(b)

���

bin4

AAAAA
AAAAC
AAAAG
AAAAT
.

CCCCT
.
.
.
.

GCATG
.

TTGCA
.

TTTTT

1
1
0
0
.
1
.
.
.
.
1
.
1
.
0

0
1
0
.
1
.
1
.
1
.
1
.
.
.
0

AAAAA
AAAAC
AAAAG

.
AGAAA

.
GAAAA

.
GACAG

.
GCATG

.

.

.
TTTTT

� � �

b1 b2

tokens

32

GRIM-Filter in 3D-Stacked DRAM

n Each DRAM layer is organized as an array of banks
q A bank is an array of cells with a row buffer to transfer data

n The layout of bitvectors in a bank enables filtering many bins in
parallel

33

DRAM	Layers

Logic	Layer

TSVs

Bank

Row	Buffer

Bank
Row	0:	AAAAA
Row	1:	AAAAC
Row	2:	AAAAG

.

.

.
Row	R–1:	TTTTT

.	.	.

Vault

...

DRAM	Layers

Logic	Layer

TSVs

Bank

Bi
tv
ec
to
rf
or
	b
in
	0

Bi
tv
ec
to
rf
or
	b
in
	1

Bi
tv
ec
to
rf
or
	b
in
	2

Bi
tv
ec
to
rf
or
	b
in
	t–

1

Row	Buffer

Bank
Row	0:	AAAAA
Row	1:	AAAAC
Row	2:	AAAAG

.

.

.
Row	R–1:	TTTTT

.	.	.

Vault

GRIM-Filter
n Key observation: FPGA and GPU accelerators are Heavily

bottlenecked by Data Movement.

n Key idea: exploiting the high memory bandwidth and the logic layer
of 3D-stacked memory to perform highly-parallel filtering in the
DRAM chip itself.

n Key results:
q We propose an algorithm called GRIM-Filter
q GRIM-Filter with processing-in-memory is 1.8x-3.7x (2.1x on

average) faster than FastHASH filter (BMC Genomics’13) across real
data sets.

q GRIM-Filter has 5.6x-6.4x (6.0x on average) lower falsely accepted
pairs than FastHASH filter (BMC Genomics’13) across real data sets.

34

Key Conclusion

Most speedup comes from

parallelism enabled by

novel architectures and algorithms

35

Contributors

36

Mohammed Alser Juan Gómez Luna Gagandeep Singh

And many more from: https://safari.ethz.ch

Jeremie Kim Can Alkan Onur Mutlu

http://www.safari.ethz.ch/

Filter Before You Parse
Accelerate Any Sequence Aligner

Mohammed Alser, PhD
@mealser

RECOMB 2023 - Bio-Arch
14 April 2023

