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Pairwise Sequence Alignment
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n Calculating the best arrangement of matches and edits (i.e., 
insertions, deletions, or substitutions) needed to make one 
sequence exactly matches the other one.

For 30K long sequence pairs, the DP table size = 900MB

For 300K long sequence pairs, the DP table size = 90GB



Partial Computation of DP Table
n Different algorithms compute the DP table differently.
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Koerkamp+, "Exact global alignment using A* with seed heuristic and match pruning”, bioRxiv, 2022



Alignment is Major Bottleneck
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ONT FASTQ size: 103MB (151 reads), Mean length: 356,403 bp, std: 173,168 bp, longest length: 817,917 bp

KSW2
45%

Seed 
Chaining

16%

Sorting 
Seeds
29%

Collect 
Matching 
Seeds…

Collect Minimizers
2%

>60%
of the read mapper’s 

execution time is spent in 
sequence alignment

minimap2



Goal: Minimizing Alignment Time

Sequence Alignment is expensive

Goal: Accelerate ANY sequence aligner
by reducing the need for 

dynamic programming algorithms
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Key Idea
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Genomic Strings
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Strings
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1. Filter out most of incorrect mappings.
2. Preserve all correct mappings.
3. Do it quickly.

Ideal Filtering Algorithm 
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How It Works?
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SneakySnake [Bioinformatics 2020]
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Mohammed Alser, Taha Shahroodi, Juan-Gomez Luna, Can Alkan, and Onur Mutlu,
"SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment Filter for 
CPUs, GPUs, and FPGAs"
Bioinformatics, 2020.
[Source Code]
[Online link at Bioinformatics Journal]

https://people.inf.ethz.ch/omutlu/pub/SneakySnake_UniversalGenomePrealignmentFilter_bioinformatics20.pdf
https://people.inf.ethz.ch/omutlu/pub/SneakySnake_UniversalGenomePrealignmentFilter_bioinformatics20.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/CMU-SAFARI/SneakySnake
https://doi.org/10.1093/bioinformatics/btaa1015


SneakySnake
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n Key observation:
q Correct alignment is a sequence of non-overlapping long matches. 

Dot plot, dot matrix 
(Lipman and Pearson, 1985)



SneakySnake
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n Key observation:
q Correct alignment is a sequence of non-overlapping long matches 

n Key idea:
q Approximate edit distance calculation is similar to Single Net Routing 

problem in VLSI chip
VLSI chip layout



SneakySnake Walkthrough
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Building Neighborhood Map Finding the Optimal Routing Path Examining the Snake Survival

E = 3



SneakySnake Walkthrough
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Building Neighborhood Map Finding the Optimal Routing Path Examining the Snake Survival

E = 3
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SneakySnake Walkthrough

14

Building Neighborhood Map Finding the Optimal Routing Path Examining the Snake Survival
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SneakySnake Walkthrough
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Building Neighborhood Map Finding the Routing Travel Path Examining the Snake Survival

This is what you actually need to build and it 
can be done on-the-fly!
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Evaluation Results
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Filtering Accuracy
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Alser, "Accelerating the Understanding of Life's Code Through Better Algorithms and 
Hardware Design”, arXiv preprint arXiv:1910.03936, 2019.

https://arxiv.org/abs/1910.03936
https://arxiv.org/abs/1910.03936


Long Read Mapping (SneakySnake vs KSW2)
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10K bp reads                      100K bp reads



Accelerating WFA (and BiWFA)
n Integrating SneakySnake with WFA accelerates end-to-end 

sequence alignment by about 4.2-9.6x for different sequence 
lengths.
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Key Results of SneakySnake
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q SneakySnake is up to four orders of magnitude more accurate than 
Shouji (Bioinformatics’19) and GateKeeper (Bioinformatics’17)

q Using short reads, SneakySnake accelerates Edlib (Bioinformatics’17) and 
Parasail (BMC Bioinformatics’16) by
n up to 37.7× and 43.9× (>12× on average), on CPUs 
n up to 413× and 689× (>400× on average) with FPGA/GPU acceleration

q Using long reads, SneakySnake accelerates Parasail and KSW2 by 
140.1× and 17.1× on average, respectively, on CPUs



Can We Do Better?

Alleviating
Data Movement

Bottlenecks
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Near-memory Pre-alignment Filtering
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Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, Juan 
Gomez-Luna, Henk Corporaal, Onur Mutlu,
“FPGA-Based Near-Memory Acceleration of Modern Data-Intensive Applications“
IEEE Micro, 2021.
[Source Code]

https://arxiv.org/pdf/2106.06433.pdf
https://github.com/CMU-SAFARI/SneakySnake/tree/master/SneakySnake-HLS-HBM


Heterogeneous System: CPU+FPGA
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POWER9 AC922

HBM-based AD9H7 board 

CAPI2

Source: AlphaData

Source: IBM

Source: AlphaData

DDR4-based AD9V3 board

We evaluate two POWER9+FPGA systems:
1. HBM-based AD9H7 board: Xilinx Virtex Ultrascale+™XCVU37P-2
2. DDR4-based AD9V3 board: Xilinx Virtex Ultrascale+™XCVU3P-2

FPGA + HBM on the same package substrate



Key Results of Near-memory SneakySnake

28

Near-memory pre-alignment filtering improves performance and 
energy efficiency by 27.4× and 133×, respectively, 
over a 16-core (64 hardware threads) IBM POWER9 CPU



GRIM-Filter
n Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, 

Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-
in-Memory Technologies"
to appear in BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), Yokohama, 
Japan, January 2018.
arxiv.org Version (pdf)
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http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf


GRIM-Filter in 3D-Stacked DRAM

n Each DRAM layer is organized as an array of banks
q A bank is an array of cells with a row buffer to transfer data
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GRIM-Filter: Bitvectors
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AAAAC
exists in 
bin 1

CCCCT
doesn’t 
exist in 
bin 1

q Represent each bin with a bitvector that 
holds the occurrence of all permutations 
of a small string (token) in the bin

q To account for matches that straddle bins, 
we employ overlapping bins
n A read will now always completely fall within 

a single bin



GRIM-Filter: Bitvectors

Storing all bitvectors
requires 𝟒𝒏 ∗ 𝒕 bits
in memory, 
where 
t = number of bins 
&
n = token length.

For bin size ~200, 
and n = 5, 
memory footprint
~3.8 GB 
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GRIM-Filter in 3D-Stacked DRAM

n Each DRAM layer is organized as an array of banks
q A bank is an array of cells with a row buffer to transfer data

n The layout of bitvectors in a bank enables filtering many bins in 
parallel
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GRIM-Filter
n Key observation: FPGA and GPU accelerators are Heavily 

bottlenecked by Data Movement.

n Key idea: exploiting the high memory bandwidth and the logic layer 
of 3D-stacked memory to perform highly-parallel filtering in the 
DRAM chip itself.

n Key results: 
q We propose an algorithm called GRIM-Filter
q GRIM-Filter with processing-in-memory is 1.8x-3.7x (2.1x on 

average) faster than FastHASH filter (BMC Genomics’13) across real 
data sets.

q GRIM-Filter has 5.6x-6.4x (6.0x on average) lower falsely accepted 
pairs than FastHASH filter (BMC Genomics’13) across real data sets.
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Key Conclusion

Most speedup comes from 

parallelism enabled by 

novel architectures and algorithms
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