
Luk Burchard
Simula Research Laboratory, Norway
luk@simula.no

In collaboration with:
Aydın Buluç, Xing Cai, Giulia Guidi,

Johannes Langguth, Max Zhao

Apr 14, 2023

SRAM-Based MIMD AI-Accelerators for
Sequence Alignment: Using the Graphcore IPU
for High-Throughput Bioinformatics

GPUs started as a product for gamers, but
are a great tool for accelerating scientific calculations

2 Image Source: Peter Langfelder, Bin Zhang, Steve Horvath; Izaak Neutelings; Meet Scott Braun, NASA, Andrey Matveev

GPUs started as a product for gamers, but
are a great tool for accelerating scientific calculations

3 Image Source: Peter Langfelder, Bin Zhang, Steve Horvath; Izaak Neutelings; Meet Scott Braun, NASA, Andrey Matveev

We have new hardware for AI/ML, but can they be
repurposed like (GP)GPUs.

4

?

Image Source: Peter Langfelder, Bin Zhang, Steve Horvath; Izaak Neutelings; Meet Scott Braun, NASA, Andrey Matveev

We take a look at the Graphcore IPU
Relevant IPU features:

 MIMD rather than SIMD
❏ 1472 individual cores (tiles)

Dark silicon is SRAM
❏ 918MB cache

 Low memory latency
❏ 1 cycle each access (128 bit)

 High on-chip memory bandwidth
❏ 8 TB/s core-core

Build for AI acceleration
No external memory (RAM)

5

The IPU chip has 1472 individual cores with individual memory

6
6

The IPU chip has 1472 individual cores and 8832 threads

7
7

6 threads core (red)
624kb memory (blue)
❏ tile local only
❏ 1 cycles for load&store

❏ 128bit laod+64bit store
❏ No cache hierarchy

The ISA uses VLIW✝ for the MAIN, and AUX pipeline

8

Integer operations,
memory operations,
control flow

Floating point unit,
special AXPY
instructions.

Very AI/ML
workload centric.

Source: Tile Vertex ISA 1.2.3✝Very Long Instruction Word

The ISA uses VLIW✝ for the MAIN, and AUX pipeline

9

Integer operations,
memory operations,
control flow

Floating point unit,
special AXPY
instructions.

Very AI/ML
workload centric.

6 threads:
❏ no synchronization
❏ Time-multiplexed

No explicitly
exposed API

Source: Tile Vertex ISA 1.2.3✝Very Long Instruction Word

A 1:1 communication is possible

10
10

Crossbar Switch:
Tile-to-tile is “constant” latency

There is no restriction on the destination location

11
11

More complex communication patterns with broadcasts
are possible

12
12

We have good throughput/latency only on the chip

13

Register 12i,9f pcs

Tile local (614 KB)

IPU other Tile (918 MB)

Remote Memory (2x128 GB)

Host

100Gbps

6.6 GB/s (max 20 GB/s)

8 TB/s

54 TB/s
(128bit Cycle)

On Chip

Distributed memory
over x1472 tiles

C
os

t [
ti

m
e]

Compute

Exchange

Global Sync

Processor

Theory:
❏ Simple synchronization and

coordination
❏ 3 Phases

❏ Exchange
❏ Compute
❏ Sync

Applied:
❏ Only pre-defined

communication

14

Superstep

The Bulk-Synchronous Parallel (BSP) model is
built into the hardware

...

Add
X

Y
out

SumA out

Tensor Compute Vertex

15

The computational graph indirectly defines
exchanges from Tensor source location to Vertex
input.

Add
X

Y
out

SumA out

Tensor Compute Vertex

Global Barrier

16

The computational graph indirectly defines
exchanges from Tensor source location to Vertex
input.

Tensor Compute Vertex

Global Barrier

Add
X

Y
out

SumA out

Add
X

Y
out

17

The computational graph indirectly defines
exchanges from Tensor source location to Vertex
input.

Tensor Compute Vertex

Global Barrier

Add
X

Y
out

SumA out

Add
X

Y
out

18

The computational graph indirectly defines
exchanges from Tensor source location to Vertex
input.

Superstep

Tensor

Compute Vertex

Global Barrier

Add
X

Y
out

SumA out

Add
X

Y
out

Synchronization

Pa
ra

lle
lis

at
io

n
The IPU uses a dataflow model to define its
computation and communication

19

T2

T0

T0

T3T0

T2

T0

Tensor Compute Vertex

Global Barrier

Add
X

Y
out

SumA out

Add
X

Y
out

20

Mapping has to be specified explicitly, the compiler
creates exchange code

Superstep

Tensors get copied to the tile running the codelet

21

A

B

scores

T123

Tensors get copied to the tile running the codelet

22

Add
A

B
score

A

B

scores

T123

Tensors get copied to the tile running the codelet

23

Add
A

B
score

A

B

scores

H
o

st
 C

o
m

p
ile

 T
ile

Codeletes are as C++ classes with a default entry
function

24

Add
A

B
score

IP
U

 K
er

n
el

 C
o

d
e

Codelets are as C++ classes with a default entry
function

25

Add
A

B
score

IP
U

 K
er

n
el

 C
o

d
e

The compiler generates code to
exchange these members
defined by the tile mappings in
the dataflow graph

Exact Algorithms

Smith Waterman Implementations

Tradeoffs

Much research has been done on the topic of sequence
alignment

Heuristics

burrows
wheeler

alignment

BLAST

minimap2

FASTA

SIMD
Implementations Dedicated hardware

Farrar 2007

SSW Library, 2013

Alpern 1995

GPU

cudaSW++

GASAL2

Cell BE

O(n) space

O(n2c) timeFGPA

…

Needleman-Wunsch Implementations

ADEPT-SW

26

PASTIS a real-world protein clustering pipeline application

27

PASTIS pipeline

Many-to-many
Smith-Watermann
Sequence Alignment

Source:
Selvitopi, Oguz, et al. "Distributed many-to-many protein sequence alignment using sparse matrices." SC20, IEEE, 2020.
Selvitopi, Oguz, et al. "Extreme-scale many-against-many protein similarity search." SC22, IEEE, 2022.

The Smith-Waterman algorithm

❏ Local Alignment Algorithm to find the best matching overlap

❏ No fixed start/end position
❏ This is different to the Needleman-Wunsch algorithm

❏ Affine gap penalties make is difficult to compute
❏ (i.e. a longer gap is more likely than many conjunct gaps)

❏ Proteins benefit from similarity scoring, valuing indels per basis
❏ i.e. BLOSUM62

→ Smith-Waterman based algorithms with affine gaps and similarity

matrices offer good quality for protein sequences but are slow

28

local-alignment

FATCA-TY
 ||| ||
 TCAGSFA

We include symbol
similarity

The Smith-Waterman algorithm

❏ Dynamic Programming Algorithm
❏ We create a matrix containing scores

❏ The highest score indicates the best valued alignment of two sequences

❏ Cell updates need the top, top-diagonal, and left fields value

29

top-left + sim
ilarity

to
p

 - gap

left - gap

matrix fill
direction

maximum

Smith-Waterman implementation for the IPU

We choose a O(n) memory formulation for our implementation

❏ Only columns need to be stored

❏ No on tile SIMD → Wavefront algorithm is not helpful

Careful coding and type (INT/FP) utilization to use the VLIW

Single sequence comparison per thread

→ No communication as whole comparison fits in SRAM domain

(tile memory)

Balance |A|*|B| complexity due to BSP-makespan limitation
30

❏ 5x speedup vs CPU for total pipeline
❏ CPU: 1142s, 88% alignment time

❏ IPU: 225, 40% alignment time

❏ Alignment speedup of 11.1x

❏ 24.9x speedup vs GPU in kernel
❏ 2.8x 1IPU/1GPU

❏ 24.9x 16IPU/1GPU

❏ 6.9x 16IPU/8GPU

❏ Our Alignment scales linearly with

number of IPUs up to 16 devices

31

PASTIS results

Final work is under review and includes further details on

❏ Detailed discussion of the algorithm
❏ Bespoke IPU implementation

❏ PASTIS and MetaHipMer2 pipeline showcase

❏ Single device comparison to CPUs and GPUs
❏ 2 GPU implementation

❏ 3 CPU implementations

❏ Strong&Weak scaling results

❏ Discussion on load-balancing algorithms

32

Seed extesion and X-Drop reduces the area compared to SW

33

Heuristic optimization to reduce the search area, makes it difficult for GPUs, wide SIMD

(a) Static search area reduction

(b) X-Drop dynamically reduces the search for “unrecoverable” bad values

X-Drop Insights

❏ Tailored to longer sequences 10k-20k symbols+
❏ Worse SIMD suitable than simple Smith-Waterman/Needleman-Wunsch

❏ Terminates fast on mismatching sequences

❏ Higher sequence error rate/similarity → larger searchable area size

❏ Memory requirements of normal X-Drop implementations are O(N)
❏ More specifically 3*N
❏ Challenge: Out of memory for 6 thread requiring algorithm scratch space

34

X-Drop Observation, only a small part of the
temporary workspace is needed

35

❏ The active worklen is only written each phase and

read next phase (grey area)

We can reformulate X-Drop to only allocate the maximum

worklen and work with reduced memory

→ 55x reduction in memory

Optimizing the memory usage allows us to place more problems
to a single tile and utilize parallelism

❏ Due to early termination balancing becomes

challenging
❏ Increase inputs (samples) to reduce variance

For X values from 5 to 50

❏ 1.7x to 4.7x against state-of-the-art CPUs

and codes (Milan 7763 64 Threads)

❏ 7x to 22x against only GPU code (A100)

Real world pipelines (alignmen kernels):

ELBA: 22.3x 16 IPUs vs 16 GPUs (C elegans HiFi)

PASTIS: 4.7x speedup (metaclust 500k) 36

Final work is under review and includes further details on

❏ Detailed discussion of the algorithm

❏ Analysis of the memory efficiency under dataset and X parameters

❏ ELBA and PASTIS pipeline showcase

❏ Single device comparison to CPUs and GPUs
❏ 3 CPU implementations

❏ 1 GPU implementations

❏ 2 IPU generations

❏ Strong&Weak scaling results

❏ Many-to-Many sequence reuse for further memory reduction
❏ 3-4x transfer savings

37

Reusing AI/ML-Accelerators for Sequences alignment problems
is possible and beneficial

Sequence alignment algorithms are
fundamentally memory bound and
require many instructions

SRAM-based processing offered by AI
accelerators offer memory and
instruction throughput, but require
careful memory management

Questions? 38

!

