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GPUs started as a product for gamers, but
are a great tool for accelerating scientific calculations
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GPUs started as a product for gamers, but
are a great tool for accelerating scientific calculations
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We have new hardware for Al/ML, but can they be
repurposed like (GP)GPUs.
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We take a look at the Graphcore IPU

Relevant IPU features:

MIMD rather than SIMD
A 1472 individual cores (tiles)

Dark silicon is SRAM
1 918MB cache

Low memory latency
[d 1 cycle each access (128 bit)

High on-chip memory bandwidth
1 8 TB/s core-core

Build for Al acceleration
No external memory (RAM)




The IPU chip has 1472 individual cores with individual memory
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The IPU chip has 1472 individual cores and 8832 threads

———

6 threads core (red)
624kb memory (blue)
A tile local only
d 1 cycles for load&store
A 128bit laod+64bit store
A No cache hierarchy
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The ISA uses VLIW ' for the MAIN, and AUX pipeline

Floating point unit,
special AXPY
instructions.

/ Very Al/ML

workload centric.

/

Integer operations,
memory operations,
control flow

& TVery Long Instruction Word Source: Tile Vertex ISA 1.2.3



The ISA uses VLIW ' for the MAIN, and AUX pipeline

No explicitly

|
. —+— exposed AP
|

6 threads:
A no synchronization
A Time-multiplexed . S p— .

Floating point unit,
special AXPY
instructions.

/ Very Al/ML

workload centric.

/

Integer operations,
memory operations,
control flow
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A 1:1 communication is possible

Crossbar Switch:
Tile-to-tile is “constant” latency \

8
g

T T e T

g
NN RN ANN RN AuaNaAA AN

T T T T T T T T

10



There is no restriction on the destination location
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More complex communication patterns with broadcasts
are possible
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We have good throughput/latency only on the chip

Host
| 100Gbps

Remote Memory (2x128 GB)

6.6 GB/s (max 20 GB/s)

IPU other Tile (918 MB)
| 8 TB/s

On Chip — Tile local (614 KB)

| | 54 TB/s
(128bit Cycle)

Distributed memory
over x1472 tiles

Register 12i,9f pcs




The Bulk-Synchronous Parallel (BSP) model is
built into the hardware

Processor

Theory: Compute )
A Simple synchronization and

coordination B Exchange
(A 3 Phases

[ Exchange i’y Global Sync -/

d  Compute g -

d  Sync =

S

Applied: © t
A Only pre-defined

communication
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The computational graph indirectly defines
exchanges from Tensor source location to Vertex
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The computational graph indirectly defines
exchanges from Tensor source location to Vertex
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The computational graph indirectly defines
exchanges from Tensor source location to Vertex

Input. |
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The computational graph indirectly defines
exchanges from Tensor source location to Vertex
i n p ut. Global Barrier
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The IPU uses a dataflow model to define its
computation and communication

Global Barrier
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Mapping has to be specified explicitly, the compiler
creates exchange code

Global Barrier
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Tensors get copied to the tile running the codelet

qiEt

// Compute graph types. SCores

Tensor A{};
Tensor B{}; B ﬁ J
Tensor scores{};

21



Tensors get copied to the tile running the codelet

A
// Compute graph types. ]

Tensor A{}; T123

7
Add score

scores

Tensor B{}; B i
Tensor scores{};
// Add the codelet to a vertex.

VertexRef vtx = graph.addVertex(group, "Add");
graph.setTileMapping(vtx, 123);

=
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Tensors get copied to the tile running the codelet

Host Compile Tile

// Compute graph types.
Tensor A{};

Tensor B{};

Tensor scores{};

// Add the codelet to a vertex.
VertexRef vtx = graph.addVertex(group,
graph.setTileMapping(vtx, 123);

// Connect the tensors.

graph.connect(vtx["A"], A);

graph.connect(vtx["B"], B);
]

graph.connect(vtx["score"], scores([0]);

"Add" ) :

A

scores
T123

V)
>

Add score

1o
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Codeletes are as C++ classes with a default entry
function

IPU Kernel Code

public:

class Add : public poplar::Vertex {
private: ZZ

// Fields

poplar::Input<poplar::Vector<int>> A;
poplar::Input<poplar::Vector<int>> B;
poplar::Qutput<int> score; Add score

[N

(o]

bool compute() {
for (size_t i = @; i < A.size(); i++) {
xscore += A[i] + B[i];
}
|
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Codelets are as C++ classes with a default entry
function

class Add : public poplar::Vertex {

private: ZZ
public:
// Fields
% poplar::Input<poplar::Vector<int>> A;
% poplar::Input<poplar::Vector<int>> B; A
c poplar::Qutput<int> score; Add score
< B
z bool compute() {
for (size_t i = @; i < A.size(); i++) {
xscore += A[i] + B[il;
} The compiler generates code to
s exchange these members
3 defined by the tile mappings in

the dataflow graph 25



Much research has been done on the topic of sequence

alighment

a

BLAST

FASTA
minimap2
burrows

wheeler
alignment

Heuristics
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PASTIS a real-world protein clustering pipeline application
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Protein FASTA Similarity Network

Many-to-many
Smith-Watermann
Sequence Alignment

PASTIS pipeline

Source:
Selvitopi, Oguz, et al. "Distributed many-to-many protein sequence alignment using sparse matrices." SC20, IEEE, 2020.

Selvitopi, Oguz, et al. "Extreme-scale many-against-many protein similarity search." SC22, IEEE, 2022.



The Smith-Waterman algorithm

Local Alignment Algorithm to find the best matching overlap
No fixed start/end position

[  This is different to the Needleman-Wunsch algorithm

Affine gap penalties make is difficult to compute

[  (i.e. alonger gap is more likely than many conjunct gaps)

Proteins benefit from similarity scoring, valuing indels per basis
O i.e. BLOSUM62

L o oo

— Smith-Waterman based algorithms with affine gaps and similarity
matrices offer good quality for protein sequences but are slow

local-alignment
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The Smith-Waterman algorithm

A Dynamic Programming Algorithm
(d  We create a matrix containing scores

A The highest score indicates the best valued alighnment of two sequences

(A Cell updates need the top, top-diagonal, and left fields value
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Smith-Waterman implementation for the IPU

We choose a O(nt) memory formulation for our implementation

(d  Only columns need to be stored
d  No on tile SIMD — Wavefront algorithm is not helpful

Careful coding and type (INT/FP) utilization to use the VLIW
Single sequence comparison per thread

— No communication as whole comparison fits in SRAM domain
(tile memory)

Balance |A|*|B| complexity due to BSP-makespan limitation

30



PASTIS results
B OtherEZ AS x AT Hl AT I Align

IPU
d  5x speedup vs CPU for total pipeline
A CPU: 1142s, 88% alignment time CPU ---
A IPU: 225, 40% alignment time | | | | | |
(d  Alignment speedup of 11.1x 200 400 600 800 1000 200
Wall-Time [s]

d  24.9x speedup vs GPU in kernel

d  2.8x 1IPU/1GPU
d  24.9x 16/PU/1GPU

Pre Il Post Il Align

O 6.9x 16IPU/8GPU 100 -
[ Our Alignment scales linearly with é
number of IPUs up to 16 devices = 59 B _
=

. |
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Final work is under review and includes further details on

[d  Detailed discussion of the algorithm

(d  Bespoke IPU implementation

A PASTIS and MetaHipMer2 pipeline showcase

(A Single device comparison to CPUs and GPUs

A 2 GPU implementation
(d 3 CPU implementations

[d  Strong&Weak scaling results
(A Discussion on load-balancing algorithms

32



Seed extesion and X-Drop reduces the area compared to SW

(a) Banded

(b) X-Drop

Heuristic optimization to reduce the search area, makes it difficult for GPUs, wide SIMD

(a)
(b)

Static search area reduction

X-Drop dynamically reduces the search for “unrecoverable” bad values

33



X-Drop Insights

Ry Hpy N, N

Tailored to longer sequences 10k-20k symbols+
(d  Worse SIMD suitable than simple Smith-Waterman/Needleman-Wunsch

Terminates fast on mismatching sequences
Higher sequence error rate/similarity — larger searchable area size

Memory requirements of normal X-Drop implementations are O(IN)
(d  More specifically 3*N
[  Challenge: Out of memory for 6 thread requiring algorithm scratch space

34



X-Drop Observation, only a small part of the

temporary workspace is needed

(A The active worklen is only written each phase and
read next phase (grey area)

We can reformulate X-Drop to only allocate the maximum
worklen and work with reduced memory

— 55x reduction in memory

worklen b--===---- |
antidiaglen |

Al
Q

Memory-Restricted 35



Optimizing the memory usage allows us to place more problems

to a single tile and utilize parallelism

(A Due to early termination balancing becomes

challenging
. Increase inputs (samples) to reduce variance

For X values from 5 to 50

A 1.7x to 4.7x against state-of-the-art CPUs
and codes (Milan 7763 64 Threads)
A 7xto 22x against only GPU code (A100)

Real world pipelines (alignmen kernels):
ELBA: 22.3x 16 IPUs vs 16 GPUs (C elegans HiFi)

PASTIS: 4.7x speedup (metaclust 500k)

Xdrop =5

12x1o5é
1x105‘f
8x104—f
6x104—f

4x10% 4

2x10% -

[dlogan [ ksw2
I seqgan M ours

il %

————————— ) - ————————

04
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Final work is under review and includes further details on

Detailed discussion of the algorithm
Analysis of the memory efficiency under dataset and X parameters
ELBA and PASTIS pipeline showcase

Single device comparison to CPUs and GPUs

Q3 CPU implementations
(d 1 GPU implementations
A 2 IPU generations

Strong&Weak scaling results
Many-to-Many sequence reuse for further memory reduction

d  3-4x transfer savings

(I Ny WAy N

L L
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Reusing Al/ML-Accelerators for Sequences alignment problems

is possible and beneficial

Sequence alignment algorithms are
fundamentally memory bound and
require many instructions

'

SRAM-based processing offered by Al
accelerators offer memory and
instruction throughput, but require
careful memory management

Questions?
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