SRAM-Based MIMD Al-Accelerators for
Sequence Alighment: Using the Graphcore IPU
for High-Throughput Bioinformatics

Luk Burchard
Simula Research Laboratory, Norway
luk@simula.no

In collaboration with:
Aydin Bulug, Xing Cai, Giulia Guidi,
Johannes Langguth, Max Zhao

® simula 1
)) < o,
Sl BERKELEY LAB ¢

==ty | Cornell Bowers C1IS .
‘ College of Computing C HAR | TE I La bOI‘

and Information Science

Apr 14, 2023

GPUs started as a product for gamers, but
are a great tool for accelerating scientific calculations

2 Image Source: Peter Langfelder, Bin Zhang, Steve Horvath; Izaak Neutelings; Meet Scott Braun, NASA, Andrey Matveev

GPUs started as a product for gamers, but
are a great tool for accelerating scientific calculations

hidden layer

)
N2\ Dy s Oy

0L
LAy

3 Image Source: Peter Langfelder, Bin Zhang, Steve Horvath; lzaak Neutelings} MeetVScott Braun, NASA, Andrey MatveeV

DRSS LN

We have new hardware for Al/ML, but can they be
repurposed like (GP)GPUs.

hidder 1>

1111)11t

4/A
» ‘
g\:rf: S oD
.,,QA "3;:{ '3»”«»\'
.(l
\\\v//,\\v \\\V/

/A\‘///A\}o

Height
06 07 08 09 10

I i | S
N N
I N

4 Image Source: Peter Langfelder, Bin Zhang, Steve Horvath; Izaak Neutelings; Meet Scott Braun, NASA, Andrey Matveev

We take a look at the Graphcore IPU

Relevant IPU features:

MIMD rather than SIMD
A 1472 individual cores (tiles)

Dark silicon is SRAM
1 918MB cache

Low memory latency
[d 1 cycle each access (128 bit)

High on-chip memory bandwidth
1 8 TB/s core-core

Build for Al acceleration
No external memory (RAM)

The IPU chip has 1472 individual cores with individual memory

IR AT R RURTA AR RO
DR TR,

3
A
R
OO LU L LR
LT TP ER LV
A
[e P
L e T T T
AU uRn AR aNuRTRARRANORTARUARARNARRANOMR
LU O UL LT L
II§
A
A mAmannnnmAANUNNMHOGANQNAAR
QA

TEAUEAOEaANAA AR BAAEAREAARAACHRAN:

AuRUR N AR RURnRARRAARURTARURRARAUDRANOMR

e AT
QLU L AT LT LT L
JNUE A AN
IR ARTA RN MU ARNAOANY
B e
B (L T T
NN AR AR AR N AN
LT T
e e T
| EeaaeUERaRERBAAENNERRABROAEBRARCRERARE
[e T T TR
gII
| AU ERAAN AR R AT ENANR N ERAR DR UBAATE
O A
JNNRnnnnnanaanNRAAAAARARRRRRAARARRGAn
B LT TR T
NN AAARAAAA AR AR RN
LT OO

The IPU chip has 1472 individual cores and 8832 threads

———

6 threads core (red)
624kb memory (blue)
A tile local only
d 1 cycles for load&store
A 128bit laod+64bit store
A No cache hierarchy

QNN NNNRNAARRaNNRNRAARRANRNNRRARAT
8|
A mAmannnnmAANUNNMHOGANQNAAR

RN DA RRuNNRRRAARNANANORAY
B (L T T
NN AR AR AR N AN
LT T
e e T
RN ARUN RN REAARNAOANY
B LT TR T
NN AAARAAAA AR AR RN
LT OO

The ISA uses VLIW ' for the MAIN, and AUX pipeline

Floating point unit,
special AXPY
instructions.

/ Very Al/ML

workload centric.

/

Integer operations,
memory operations,
control flow

& TVery Long Instruction Word Source: Tile Vertex ISA 1.2.3

The ISA uses VLIW ' for the MAIN, and AUX pipeline

No explicitly

|
. —+— exposed AP
|

6 threads:
A no synchronization
A Time-multiplexed . S p— .

Floating point unit,
special AXPY
instructions.

/ Very Al/ML

workload centric.

/

Integer operations,
memory operations,
control flow

L —
9 TVery Long Instruction Word ' Source: Tile Vertex ISA 1.2.3

A 1:1 communication is possible

Crossbar Switch:
Tile-to-tile is “constant” latency \

8
g

T T e T

g
NN RN ANN RN AuaNaAA AN

T T T T T T T T

10

There is no restriction on the destination location

11

More complex communication patterns with broadcasts
are possible

L O RO AA UM TARUDAAUMTARNMTRAYUMTAY MR

=
—
—
—
—
!
!
—
—
—
—
1
!
—
—
!
—
—
!
1
—
—
—
!
—
—
!
—
—
—
1
—
—
—
!
—
—
—
—
—
—
1
!
—
-
—
—
—
—
1
—
—
—
-
—
—
!
—
—
!
—
1
—
—1
—
!
—
—
—
—
—
!
1
—
—
—
-
—
!
—
1
!
—
—
!
—
—
—
col

L O A mmmRRRNRMUMANMNRRNANAAR

I REaAEEIAREMAseEAARCERAAEEARRCRaRaERanuE W §RACNRaONUEIAEONIARNEAROEIANENARNEAANEAR

A e E e

i

R
I e e
LU LT ETUOrY e A A

12

We have good throughput/latency only on the chip

Host
| 100Gbps

Remote Memory (2x128 GB)

6.6 GB/s (max 20 GB/s)

IPU other Tile (918 MB)
| 8 TB/s

On Chip — Tile local (614 KB)

| | 54 TB/s
(128bit Cycle)

Distributed memory
over x1472 tiles

Register 12i,9f pcs

The Bulk-Synchronous Parallel (BSP) model is
built into the hardware

Processor

Theory: Compute)
A Simple synchronization and

coordination B Exchange
(A 3 Phases

[Exchange i’y Global Sync -/

d Compute g -

d Sync =

S

Applied: © t
A Only pre-defined

communication

dajsiodng

The computational graph indirectly defines
exchanges from Tensor source location to Vertex

S
\[A Sum out‘}/ﬁ

Compute Vertex

input.
ST

<R
>
Q
Q
|O

Tensor

The computational graph indirectly defines
exchanges from Tensor source location to Vertex

input. |

S
S
\[A Sum out‘}/ﬁ

Compute Vertex

<R
>
Q
Q
|O

Tensor

Global Barrier

The computational graph indirectly defines
exchanges from Tensor source location to Vertex

Input. |
W i
\f I
X
Add out
Y v
S)\ o i
f [B ’ A Sum out
= A out
’\ Add out T
Y
N J Compute Vertex

Tensor

Global Barrier

The computational graph indirectly defines
exchanges from Tensor source location to Vertex
i n p ut. Global Barrier

W i
\f I
X
Add out
Y v
f [B ’ A Sum out
= A out
’\ Add out T
Y
N J Compute Vertex

Tensor

Y
Superstep

The IPU uses a dataflow model to define its
computation and communication

Global Barrier

Tensor

7 |
(© Add o

/
e
m

Compute Vertex

/>< il ’\\ A Sum out
f\i[x Add o_ut}/

~———

Parallelisation

Synchronization

Mapping has to be specified explicitly, the compiler
creates exchange code

Global Barrier
TO T2 / T3 \
\\ X h a N\
= TO
_ Add o \
= S
\ J N\ N
S
a N
T0 A Sum out
X
- { Add o | < J
Y
Tensor ~ Compute Vertex
TO
\ /
\)

Y
Superstep

Tensors get copied to the tile running the codelet

qiEt

// Compute graph types. SCores

Tensor A{};
Tensor B{}; B ﬁ J
Tensor scores{};

21

Tensors get copied to the tile running the codelet

A
// Compute graph types.]

Tensor A{}; T123

7
Add score

scores

Tensor B{}; B i
Tensor scores{};
// Add the codelet to a vertex.

VertexRef vtx = graph.addVertex(group, "Add");
graph.setTileMapping(vtx, 123);

=

22

Tensors get copied to the tile running the codelet

Host Compile Tile

// Compute graph types.
Tensor A{};

Tensor B{};

Tensor scores{};

// Add the codelet to a vertex.
VertexRef vtx = graph.addVertex(group,
graph.setTileMapping(vtx, 123);

// Connect the tensors.

graph.connect(vtx["A"], A);

graph.connect(vtx["B"], B);
]

graph.connect(vtx["score"], scores([0]);

"Add") :

A

scores
T123

V)
>

Add score

1o

23

Codeletes are as C++ classes with a default entry
function

IPU Kernel Code

public:

class Add : public poplar::Vertex {
private: ZZ

// Fields

poplar::Input<poplar::Vector<int>> A;
poplar::Input<poplar::Vector<int>> B;
poplar::Qutput<int> score; Add score

[N

(o]

bool compute() {
for (size_t i = @; i < A.size(); i++) {
xscore += A[i] + B[i];
}
|

24

Codelets are as C++ classes with a default entry
function

class Add : public poplar::Vertex {

private: ZZ
public:
// Fields
% poplar::Input<poplar::Vector<int>> A;
% poplar::Input<poplar::Vector<int>> B; A
c poplar::Qutput<int> score; Add score
< B
z bool compute() {
for (size_t i = @; i < A.size(); i++) {
xscore += A[i] + B[il;
} The compiler generates code to
s exchange these members
3 defined by the tile mappings in

the dataflow graph 25

Much research has been done on the topic of sequence

alighment

a

BLAST

FASTA
minimap2
burrows

wheeler
alignment

Heuristics

.

4

\\

/

//
4 N [N
(
Alpern 1995 cudaSW++
GASAL2
Farrar 2007 ADEPT-SW
. GPU
SSW Library, 2013 _) N
FGPA 20) tj
Cell BE O(n°c) time
SIMD
Implementations Dedicated hardware Tradeoffs
- J
Smith Waterman Implementations
_
Exact Algorithms Needleman-Wunsch Implementations

2/

PASTIS a real-world protein clustering pipeline application

\ w*&
pa %

SATMOr320: Find overlapping Filter alignments / l
:g::\g:.;ms:.. . sequences using A;Enuz‘:;';ap:izg based on similarity [
NAAKIKERLR k-mers 4 i thresholds >< \><

Protein FASTA Similarity Network

Many-to-many
Smith-Watermann
Sequence Alignment

PASTIS pipeline

Source:
Selvitopi, Oguz, et al. "Distributed many-to-many protein sequence alignment using sparse matrices." SC20, IEEE, 2020.

Selvitopi, Oguz, et al. "Extreme-scale many-against-many protein similarity search." SC22, IEEE, 2022.

The Smith-Waterman algorithm

Local Alignment Algorithm to find the best matching overlap
No fixed start/end position

[This is different to the Needleman-Wunsch algorithm

Affine gap penalties make is difficult to compute

[(i.e. alonger gap is more likely than many conjunct gaps)

Proteins benefit from similarity scoring, valuing indels per basis
O i.e. BLOSUM62

L o oo

— Smith-Waterman based algorithms with affine gaps and similarity
matrices offer good quality for protein sequences but are slow

local-alignment

FATCA-TY

N
TCAGSFA

.

We include symbol

similarity -

The Smith-Waterman algorithm

A Dynamic Programming Algorithm
(d We create a matrix containing scores

A The highest score indicates the best valued alighnment of two sequences

(A Cell updates need the top, top-diagonal, and left fields value

F AT CATY

0 0 0 0 0 0 O

T o|ofoljfsfofofs]o

C ofoljfofo4]sf2]S3

matrix fill A 0 |40|0|S8 \bQ 12| 6
dlrectiel. G ofofof2]z2]26]10
) s o|ofolls]|1|el|f1z]14

F 6 olofof3|olf1|20

A olollwofaloll7]5]14

.

maximum

29

Smith-Waterman implementation for the IPU

We choose a O(nt) memory formulation for our implementation

(d Only columns need to be stored
d No on tile SIMD — Wavefront algorithm is not helpful

Careful coding and type (INT/FP) utilization to use the VLIW
Single sequence comparison per thread

— No communication as whole comparison fits in SRAM domain
(tile memory)

Balance |A|*|B| complexity due to BSP-makespan limitation

30

PASTIS results
B OtherEZ AS x AT Hl AT I Align

IPU
d 5x speedup vs CPU for total pipeline
A CPU: 1142s, 88% alignment time CPU ---
A IPU: 225, 40% alignment time | | | | | |
(d Alignment speedup of 11.1x 200 400 600 800 1000 200
Wall-Time [s]

d 24.9x speedup vs GPU in kernel

d 2.8x 1IPU/1GPU
d 24.9x 16/PU/1GPU

Pre Il Post Il Align

O 6.9x 16IPU/8GPU 100 -
[Our Alignment scales linearly with é
number of IPUs up to 16 devices = 59 B _
=

. |
%%%%%%",”;

*'\ *(L *b‘ *% \6 rg,‘L *’\ *(L *b‘ *%
0T RO TRO T 0T gt o RS 31

Final work is under review and includes further details on

[d Detailed discussion of the algorithm

(d Bespoke IPU implementation

A PASTIS and MetaHipMer2 pipeline showcase

(A Single device comparison to CPUs and GPUs

A 2 GPU implementation
(d 3 CPU implementations

[d Strong&Weak scaling results
(A Discussion on load-balancing algorithms

32

Seed extesion and X-Drop reduces the area compared to SW

(a) Banded

(b) X-Drop

Heuristic optimization to reduce the search area, makes it difficult for GPUs, wide SIMD

(a)
(b)

Static search area reduction

X-Drop dynamically reduces the search for “unrecoverable” bad values

33

X-Drop Insights

Ry Hpy N, N

Tailored to longer sequences 10k-20k symbols+
(d Worse SIMD suitable than simple Smith-Waterman/Needleman-Wunsch

Terminates fast on mismatching sequences
Higher sequence error rate/similarity — larger searchable area size

Memory requirements of normal X-Drop implementations are O(IN)
(d More specifically 3*N
[Challenge: Out of memory for 6 thread requiring algorithm scratch space

34

X-Drop Observation, only a small part of the

temporary workspace is needed

(A The active worklen is only written each phase and
read next phase (grey area)

We can reformulate X-Drop to only allocate the maximum
worklen and work with reduced memory

— 55x reduction in memory

worklen b--===---- |
antidiaglen |

Al
Q

Memory-Restricted 35

Optimizing the memory usage allows us to place more problems

to a single tile and utilize parallelism

(A Due to early termination balancing becomes

challenging
. Increase inputs (samples) to reduce variance

For X values from 5 to 50

A 1.7x to 4.7x against state-of-the-art CPUs
and codes (Milan 7763 64 Threads)
A 7xto 22x against only GPU code (A100)

Real world pipelines (alignmen kernels):
ELBA: 22.3x 16 IPUs vs 16 GPUs (C elegans HiFi)

PASTIS: 4.7x speedup (metaclust 500k)

Xdrop =5

12x1o5é
1x105‘f
8x104—f
6x104—f

4x10% 4

2x10% -

[dlogan [ksw2
I seqgan M ours

il %

—————————) - ————————

04

simulated85 ecoli ecolilt00 celegans

36

Final work is under review and includes further details on

Detailed discussion of the algorithm
Analysis of the memory efficiency under dataset and X parameters
ELBA and PASTIS pipeline showcase

Single device comparison to CPUs and GPUs

Q3 CPU implementations
(d 1 GPU implementations
A 2 IPU generations

Strong&Weak scaling results
Many-to-Many sequence reuse for further memory reduction

d 3-4x transfer savings

(I Ny WAy N

L L

37

Reusing Al/ML-Accelerators for Sequences alignment problems

is possible and beneficial

Sequence alignment algorithms are
fundamentally memory bound and
require many instructions

'

SRAM-based processing offered by Al
accelerators offer memory and
instruction throughput, but require
careful memory management

Questions?

38

