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GPUs started as a product for gamers, but
are a great tool for accelerating scientific calculations
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We have new hardware for AI/ML, but can they be 
repurposed like (GP)GPUs.
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We take a look at the Graphcore IPU
Relevant IPU features:

 MIMD rather than SIMD
❏ 1472 individual cores (tiles)

Dark silicon is SRAM
❏ 918MB cache

 Low memory latency
❏ 1 cycle each access (128 bit)

 High on-chip memory bandwidth
❏ 8 TB/s core-core

Build for AI acceleration
No external memory (RAM)
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The IPU chip has 1472 individual cores with individual memory
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The IPU chip has 1472 individual cores and 8832 threads
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6 threads core (red)
624kb memory (blue)
❏ tile local only
❏ 1 cycles for load&store

❏ 128bit laod+64bit store
❏ No cache hierarchy



The ISA uses VLIW✝ for the MAIN, and AUX pipeline
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Integer operations,
memory operations,
control flow 

Floating point unit, 
special AXPY 
instructions.

Very AI/ML 
workload centric.

Source: Tile Vertex ISA 1.2.3✝Very Long Instruction Word



The ISA uses VLIW✝ for the MAIN, and AUX pipeline
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Integer operations,
memory operations,
control flow 

Floating point unit, 
special AXPY 
instructions.

Very AI/ML 
workload centric.

6 threads: 
❏ no synchronization
❏ Time-multiplexed

No explicitly 
exposed API

Source: Tile Vertex ISA 1.2.3✝Very Long Instruction Word



A 1:1 communication is possible
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Crossbar Switch:
Tile-to-tile is “constant” latency



There is no restriction on the destination location 
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More complex communication patterns with broadcasts 
are possible 
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We have good throughput/latency only on the chip
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Register 12i,9f pcs

Tile local (614 KB)

IPU other Tile (918 MB)

Remote Memory (2x128 GB)

Host

100Gbps

6.6 GB/s (max 20 GB/s)

8 TB/s

54 TB/s
(128bit Cycle)

On Chip

Distributed memory
over x1472 tiles
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Theory:
❏ Simple synchronization and 

coordination 
❏ 3 Phases

❏ Exchange
❏ Compute
❏ Sync

Applied:
❏ Only pre-defined 

communication
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Superstep

The Bulk-Synchronous Parallel (BSP) model is 
built into the hardware

...
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The computational graph indirectly defines 
exchanges from Tensor source location to Vertex 
input.
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The computational graph indirectly defines 
exchanges from Tensor source location to Vertex 
input.

Superstep
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The IPU uses a dataflow model to define its 
computation and communication
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Mapping has to be specified explicitly, the compiler 
creates exchange code

Superstep



Tensors get copied to the tile running the codelet
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Tensors get copied to the tile running the codelet
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Codeletes are as C++ classes with a default entry 
function
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Codelets are as C++ classes with a default entry 
function
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The compiler generates code to 
exchange these members 
defined by the tile mappings in 
the dataflow graph



Exact Algorithms

Smith Waterman Implementations

Tradeoffs

Much research has been done on the topic of sequence 
alignment

Heuristics

burrows 
wheeler 

alignment

BLAST

minimap2

FASTA

SIMD 
Implementations Dedicated hardware

Farrar 2007

SSW Library, 2013

Alpern 1995

GPU

cudaSW++

GASAL2

Cell BE

O(n) space

O(n2c) timeFGPA

…

Needleman-Wunsch Implementations

ADEPT-SW
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PASTIS a real-world protein clustering pipeline application
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PASTIS pipeline

Many-to-many 
Smith-Watermann
Sequence Alignment

Source:
Selvitopi, Oguz, et al. "Distributed many-to-many protein sequence alignment using sparse matrices." SC20, IEEE, 2020.
Selvitopi, Oguz, et al. "Extreme-scale many-against-many protein similarity search." SC22, IEEE, 2022.



The Smith-Waterman algorithm

❏ Local Alignment Algorithm to find the best matching overlap

❏ No fixed start/end position
❏ This is different to the Needleman-Wunsch algorithm

❏ Affine gap penalties make is difficult to compute 
❏ (i.e. a longer gap is more likely than many conjunct gaps)

❏ Proteins benefit from similarity scoring, valuing indels per basis 
❏ i.e. BLOSUM62

→ Smith-Waterman based algorithms with affine gaps and similarity 

matrices offer good quality for protein sequences but are slow
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local-alignment

FATCA-TY
  ||| ||
  TCAGSFA

We include symbol 
similarity 



The Smith-Waterman algorithm

❏ Dynamic Programming Algorithm
❏ We create a matrix containing scores

❏ The highest score indicates the best valued alignment of two sequences

❏ Cell updates need the top, top-diagonal, and left fields value 
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Smith-Waterman implementation for the IPU

We choose a O(n) memory formulation for our implementation

❏ Only columns need to be stored

❏ No on tile SIMD → Wavefront algorithm is not helpful

Careful coding and type (INT/FP) utilization to use the VLIW

Single sequence comparison per thread

→ No communication as whole comparison fits in SRAM domain 

(tile memory)

Balance |A|*|B| complexity due to BSP-makespan limitation
30



❏ 5x speedup vs CPU for total pipeline
❏ CPU: 1142s, 88% alignment time

❏ IPU: 225, 40% alignment time

❏ Alignment speedup of 11.1x

❏ 24.9x speedup vs GPU in kernel
❏ 2.8x 1IPU/1GPU

❏ 24.9x 16IPU/1GPU

❏ 6.9x 16IPU/8GPU

❏ Our Alignment scales linearly with 

number of IPUs up to 16 devices
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PASTIS results



Final work is under review and includes further details on

❏ Detailed discussion of the algorithm
❏ Bespoke IPU implementation

❏ PASTIS and MetaHipMer2 pipeline showcase

❏ Single device comparison to CPUs and GPUs
❏ 2 GPU implementation

❏ 3 CPU implementations

❏ Strong&Weak scaling results

❏ Discussion on load-balancing algorithms
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Seed extesion and X-Drop reduces the area compared to SW
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Heuristic optimization to reduce the search area, makes it difficult for GPUs, wide SIMD

(a) Static search area reduction

(b) X-Drop dynamically reduces the search for “unrecoverable” bad values



X-Drop Insights

❏ Tailored to longer sequences 10k-20k symbols+
❏ Worse SIMD suitable than simple Smith-Waterman/Needleman-Wunsch

❏ Terminates fast on mismatching sequences

❏ Higher sequence error rate/similarity → larger searchable area size

❏ Memory requirements of normal X-Drop implementations are O(N)
❏ More specifically 3*N
❏ Challenge: Out of memory for 6 thread requiring algorithm scratch space
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X-Drop Observation, only a small part of the
temporary workspace is needed
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❏ The active worklen is only written each phase and 

read next phase (grey area)

We can reformulate X-Drop to only allocate the maximum 

worklen and work with reduced memory

→ 55x reduction in memory



Optimizing the memory usage allows us to place more problems 
to a single tile and utilize parallelism

❏ Due to early termination balancing becomes 

challenging
❏  Increase inputs (samples) to reduce variance

For X values from 5 to 50

❏ 1.7x to 4.7x against state-of-the-art CPUs 

and codes (Milan 7763 64 Threads)

❏ 7x to 22x against only GPU code (A100) 

Real world pipelines (alignmen kernels):

ELBA: 22.3x 16 IPUs vs 16 GPUs (C elegans HiFi)

PASTIS: 4.7x speedup (metaclust 500k) 36



Final work is under review and includes further details on

❏ Detailed discussion of the algorithm

❏ Analysis of the memory efficiency under dataset and X parameters

❏ ELBA and PASTIS pipeline showcase

❏ Single device comparison to CPUs and GPUs
❏ 3 CPU implementations

❏ 1 GPU implementations

❏ 2 IPU generations

❏ Strong&Weak scaling results

❏ Many-to-Many sequence reuse for further memory reduction
❏ 3-4x transfer savings
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Reusing AI/ML-Accelerators for Sequences alignment problems 
is possible and beneficial

Sequence alignment algorithms are 
fundamentally memory bound and 
require many instructions

SRAM-based processing offered by AI 
accelerators offer memory and 
instruction throughput, but require 
careful memory management

Questions? 38
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