
Scrooge
A Fast and Memory-Frugal Genomic Sequence Aligner

for CPUs, GPUs, and ASICs

Joël Lindegger
Damla Senol Cali, Mohammed Alser, Juan Gómez-Luna,

Nika Mansouri Ghiasi, Onur Mutlu

April 14th 2023
BIO-Arch

• Pairwise sequence alignment is a recurring kernel in
common genomics workloads, including read mapping
and de novo assembly

• Pairwise sequence alignment is often the bottleneck in
these applications

Efficient Pairwise Alignment is Needed

2

• GenASM is a pairwise sequence alignment algorithm
proposed in prior work [Senol Cali+]

• GenASM builds a dynamic programming (DP) table
of bitvectors, followed by a traceback operation

3

Text A C G T -
Exact Match

1 Edit

2 Edits

3 Edits

4 Edits

1111 1111 1111 1111 1111
0110 1010 1100 1110 1110
0000 0000 1000 1100 1100
0000 0000 0000 1000 1000
0000 0000 0000 0000 0000

GenASM [Senol Cali+]

[Senol Cali+], “GenASM: A High-Performance, Low-Power Approximate String Matching
Acceleration Framework for Genome Sequence Analysis”, MICRO 2020

https://arxiv.org/pdf/2009.07692.pdf
https://arxiv.org/pdf/2009.07692.pdf

• GenASM is a pairwise sequence alignment algorithm
proposed in prior work [Senol Cali+]

• GenASM builds a dynamic programming (DP) table
of bitvectors, followed by a traceback operation

GenASM [Senol Cali+]

4

Text A C G T -
Exact Match

1 Edit

2 Edits

3 Edits

4 Edits

1111 1111 1111 1111 1111
0110 1010 1100 1110 1110
0000 0000 1000 1100 1100
0000 0000 0000 1000 1000
0000 0000 0000 0000 0000

[Senol Cali+], “GenASM: A High-Performance, Low-Power Approximate String Matching
Acceleration Framework for Genome Sequence Analysis”, MICRO 2020

Only Bitwise
Operations

https://arxiv.org/pdf/2009.07692.pdf
https://arxiv.org/pdf/2009.07692.pdf

Our Goals

5

Compete with state-of-the-art pairwise sequence
aligners like Edlib, KSW2, and BiWFA

Build a practical and efficient implementation
of the GenASM algorithm

for multiple computing platforms

Scrooge

6

Three novel algorithmic improvements
which address inefficiencies in the GenASM algorithm

Efficient open-source implementations
for CPUs and GPUs

Key Results
Scrooge consistently outperforms GenASM
• 2.1x speedup over GenASM on CPU
• 5.9x speedup over GenASM on GPU
• 3.6x better area efficiency than GenASM as an ASIC

Scrooge consistently outperforms state-of-the-art CPU and GPU baselines,
including KSW2, Edlib, and BiWFA

Outline

7

Background1
Analysis of GenASM2
Scrooge Algorithm3

Scrooge Implementations4
Evaluation5
Conclusion6

Pairwise Sequence Alignment (PSA)

8

• Compare a pair of strings
• while allowing

SA F AR I
SA L AM I

and deletionssubstitutions, insertions,

Pairwise Sequence Alignment (PSA)

9

SA F AR I
SA L AM I

• Compare a pair of strings
• while allowing and deletionssubstitutions, insertions,

Pairwise Sequence Alignment (PSA)

10

• Compare a pair of strings
• while allowing and deletionsinsertions, substitutions,

SA F AR I
SAH AR IF

substitutions
SAFAR I
SALAM I

Pairwise Sequence Alignment (PSA)

11

• Compare a pair of strings
• while allowing and deletionsinsertions, substitutions,

SA F AR I
SAH AR IF
-

substitutions
SAFAR I
SALAM I

Pairwise Sequence Alignment (PSA)

12

• Compare a pair of strings
• while allowing substitutions,

SA FAR I
SAH AR IF
-substitutions

SAFAR I
SALAM I

insertions

insertions,

SA F AR I
SAAR I

and deletions

Pairwise Sequence Alignment (PSA)

13

• Compare a pair of strings
• while allowing substitutions,

SA FAR I
SAH AR IF
-substitutions

SAFAR I
SALAM I

insertions

insertions,

SA F AR I
SA AR I-

and deletions

1. Compare a pair of strings
2. while allowing
• The total number of edits should be minimal

Pairwise Sequence Alignment (PSA)

14

• Compare a pair of strings
• while allowing substitutions,

SA FAR I
SAH AR IF
-substitutions

SAFAR I
SALAM I

insertions

insertions,

SAFAR I
SA AR I-

and deletions

deletions

2=1X1=1X1= 2=1I4=

2=1D3=

The CIGAR string
is the output of PSA

Arithmetic Dynamic Programming for PSA

15

A C G T

A

C

G

A

0 1 2 3 4
1
2
3
4

0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 0

Needleman-Wunsch Smith-Waterman-Gotoh, WFA, …

Next entry is calculated from three neighbors
using arithmetic operations

The GenASM Algorithm

16

A C G T
A

C

G

A

0 1 2 3 4
1
2
3
4

0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 0

Needleman-Wunsch Smith-Waterman-Gotoh, WFA, …

Next entry is calculated from three neighbors
using arithmetic operations

Text A C G T -
Exact Match

1 Edit

2 Edits

3 Edits

4 Edits

1111 1111 1111 1111 1111
0110 1010 1100 1110 1110
0000 0000 1000 1100 1100
0000 0000 0000 1000 1000
0000 0000 0000 0000 0000

GenASM
Next entry is calculated from three neighbors
using bitwise operations

Particularly efficient
in hardware

The GenASM Algorithm (Traceback)

17

Text A C G T -
Exact Match

1 Edit

2 Edits

3 Edits

4 Edits

1111 1111 1111 1111 1111
0110 1010 1100 1110 1110
0000 0000 1000 1100 1100
0000 0000 0000 1000 1000
0000 0000 0000 0000 0000

The row number is
the edit distance

Traceback obtains the CIGAR string
by backtracking the origin

of the topmost 0 in the leftmost column.

Search leftmost column
for the topmost 0

Outline

18

Background1
Analysis of GenASM2
Scrooge Algorithm3

Scrooge Implementations4
Evaluation5
Conclusion6

Analysis of GenASM

19

ASIC [Senol Cali+]
Application Specific Integrated Circuit

[Senol Cali+], “GenASM: A High-Performance, Low-Power Approximate String Matching
Acceleration Framework for Genome Sequence Analysis”, MICRO 2020

Can we do better?

CPU

GPU
Is GenASM suitable to
commodity hardware?

https://arxiv.org/pdf/2009.07692.pdf
https://arxiv.org/pdf/2009.07692.pdf

• Does commodity hardware have enough memory bandwidth
for the GenASM algorithm?

Roofline Analysis of GenASM

20

Th
ro

ug
hp

ut
H

ig
he

r i
s

be
tt

er

Desired Operating Point

Actual Operating Point
If Data Resides Off-Chip

Lost Performance
due to Limited Bandwidth

CPU
Intel Xeon Gold 5118

GPU
NVIDIA RTX A6000

Operational Intensity Operational Intensity

• Does commodity hardware have enough memory bandwidth
for the GenASM algorithm?

Roofline Analysis of GenASM

21

Th
ro

ug
hp

ut
H

ig
he

r i
s

be
tt

er

Desired Operating Point

Actual Operating Point
If Data Resides Off-Chip

Lost Performance
due to Limited Bandwidth

CPU
Intel Xeon Gold 5118

GPU
NVIDIA RTX A6000

Operational Intensity Operational Intensity

Inefficiency #1
GenASM cannot saturate commodity hardware with

computation due to too much data movement

Memory Footprint Analysis of GenASM

22

• Does commodity hardware have enough on-chip memory
for the GenASM algorithm?

CPU
Intel Xeon Gold 5118

GPU
NVIDIA RTX A6000

32KiB
L1D per Core

99KiB
Shared Memory

per SM

96.5KiB
GenASM

Memory Footprint

96.5KiB
GenASM

Memory Footprint

Memory Footprint Analysis of GenASM

23

• Does commodity hardware have enough on-chip memory
for the GenASM algorithm?

32KiB
L1D per Core

99KiB
Shared Memory

per SM

96.5KiB
GenASM

Memory Footprint

96.5KiB
GenASM

Memory Footprint

Second
GenASM Instance

Second
GenASM Instance

Third
GenASM Instance

Fourth
GenASM Instance

To Utilize
Simultaneous Multithreading

(Hyperthreading in Intel speak)

To Utilize
Simultaneous Multithreading

…

CPU
Intel Xeon Gold 5118

GPU
NVIDIA RTX A6000

Memory Footprint Analysis of GenASM

24

• Does commodity hardware have enough on-chip memory
for the GenASM algorithm?

32KiB
L1D per Core

99KiB
Shared Memory

per SM

96.5KiB
GenASM

Memory Footprint

96.5KiB
GenASM

Memory Footprint

Second
GenASM Instance

Second
GenASM Instance

Third
GenASM Instance

Fourth
GenASM Instance

To Utilize
Simultaneous Multithreading

(Hyperthreading in Intel speak)

To Utilize
Simultaneous Multithreading

…

Inefficiency #2
GenASM has a large memory footprint,

especially when multiple instances are kept in
memory for simultaneous multithreading

CPU
Intel Xeon Gold 5118

GPU
NVIDIA RTX A6000

Unnecessary Work in GenASM

25

Text A C G T -
Exact Match

1 Edit

2 Edits

3 Edits

4 Edits

1111 1111 1111 1111 1111
0110 1010 1100 1110 1110
0000 0000 1000 1100 1100
0000 0000 0000 1000 1000
0000 0000 0000 0000 0000

Cannot be Reached by Traceback

Inefficiency #3
GenASM does unnecessary work by computing
DP cells which cannot be reached by Traceback

1. Large memory bandwidth requirement

2. Large memory footprint

3. Unnecessary work

Inefficiencies in GenASM

26

Outline

27

Background1
Analysis of GenASM2
Scrooge Algorithm3

Scrooge Implementations4
Evaluation5
Conclusion6

Scrooge Algorithm

28

reduce the memory footprint and data movement

eliminates the unnecessary work

Memory Improvements

SENE
Store Entries, not Edges

DENT
Discard Entries, not Used

by Traceback

Efficiency Improvement

ET
Early Termination

Scrooge Algorithm

29

reduce the memory footprint and data movement

eliminates the unnecessary work

Memory Improvements

SENE
Store Entries, not Edges

DENT
Discard Entries, not Used

by Traceback

Efficiency Improvement

ET
Early Termination

SENE: Store Entries, Not Edges

30

Text A C G T -
Exact Match

1 Edit

2 Edits

3 Edits

4 Edits

1111 1111 1111 1111 1111
0110 1010 1100 1110 1110
0000 0000 1000 1100 1100
0000 0000 0000 1000 1000
0000 0000 0000 0000 0000

SENE: Store Entries, Not Edges

31

Text A C G T -
Exact Match

1 Edit

2 Edits

3 Edits

4 Edits

1111 1111 1111 1111 1111
0110 1010 1100 1110 1110
0000 0000 1000 1100 1100
0000 0000 0000 1000 1000
0000 0000 0000 0000 0000

00
00

00
00

0000

Deletio
n

Match
Entry

Stored
by Scrooge

In
se

rt
io

n
0000

Stored
by GenASM

SENE: Store Entries, Not Edges

32

Text A C G T -
Exact Match

1 Edit

2 Edits

3 Edits

4 Edits

1111 1111 1111 1111 1111
0110 1010 1100 1110 1110
0000 0000 1000 1100 1100
0000 0000 0000 1000 1000
0000 0000 0000 0000 0000

00
00

00
00

0000

Deletio
n

Match
Entry

Stored
by Scrooge

In
se

rt
io

n
0000

Stored
by GenASM

SENE results in a 3x reduction in
memory footprint and data movement

Scrooge Algorithm

33

reduce the memory footprint and data movement

eliminates the unnecessary work

Memory Improvements

SENE
Store Entries, not Edges

DENT
Discard Entries, not Used

by Traceback

Efficiency Improvement

ET
Early Termination

DENT: Discard Entries Not Used by Traceback

34

Text A C G T -
Exact Match

1 Edit

2 Edits

3 Edits

4 Edits

1111 1111 1111 1111 1111
0110 1010 1100 1110 1110
0000 0000 1000 1100 1100
0000 0000 0000 1000 1000
0000 0000 0000 0000 0000

Traceback is confined
due to the “windowing heuristic”

Remaining bits need to be
computed, but not stored

DENT results in a 4x reduction in
memory footprint and data movement

Scrooge Algorithm

35

reduce the memory footprint and data movement
Memory Improvements

SENE
Store Entries, not Edges

DENT
Discard Entries, not Used

by Traceback

ET
Early Termination

eliminates the unnecessary work
Efficiency Improvement

ET: Early Termination

36

Text A C G T -
Exact Match

1 Edit

2 Edits

3 Edits

4 Edits

1111 1111 1111 1111 1111
0110 1010 1100 1110 1110

Cannot be Reached by Traceback

ET eliminates the unnecessary work
on average, at least 25% of cells are unnecessary

Stop building the table as soon as a 0 is found in the leftmost bit
and start traceback

Outline

37

Background1
Analysis of GenASM2
Scrooge Algorithm3

Scrooge Implementations4
Evaluation5
Conclusion6

• We provide efficient open-source implementations
of the Scrooge algorithm for CPUs and GPUs
• Easy-to-use library interface

• CPU version
• C++
• OpenMP for multithreading

• GPU version
• C++
• NVIDIA GPUs

• CUDA 11.1
• Compute capability 7.0+

Scrooge CPU & GPU Implementations

38

Scrooge on GitHub

39
Scrooge on GitHub

Outline

40

Background1
Analysis of GenASM2
Scrooge Algorithm3

Scrooge Implementations4
Evaluation5
Conclusion6

• Datasets
• Long reads

• Simulated with PBSIM2 from the human reference genome GRCh38.p13
• Chained with minimap2 to obtain 138,929 candidate pairs

• Short reads
• Illumina reads from SRR13278681
• Chained with minimap2 to obtain 9,612,222 candidate pairs

• CPU: dual-socket Intel Xeon Gold 5118
• 2× 12 physical cores, 2× 24 logical cores @ 3.2GHz
• 196GiB DDR4 RAM

• GPU: NVIDIA RTX A6000

• ASIC
• 28nm logic synthesis from [Senol Cali+]
• SRAM numbers from CACTI 7

Methodology

41

Long Read Throughput

42

H
ig

he
r i

s
be

tt
er

A
lig

nm
en

ts
 p

er
 S

ec
on

d

CPU GPU

For long reads, Scrooge outperforms GenASM
by 2.1x on CPU and 5.9x on GPU

Long Read Throughput

43

H
ig

he
r i

s
be

tt
er

A
lig

nm
en

ts
 p

er
 S

ec
on

d

CPU GPU

Short Read Throughput

44

H
ig

he
r i

s
be

tt
er

A
lig

nm
en

ts
 p

er
 S

ec
on

d

CPU GPU

Short Read Throughput

45

H
ig

he
r i

s
be

tt
er

A
lig

nm
en

ts
 p

er
 S

ec
on

d

For short reads, Scrooge outperforms GenASM
by 3.8x on CPU and 2.4x on GPU

CPU GPU

ASIC Results

46

Scrooge introduces
no significant computation overheads

over a GenASM ASIC

Scrooge’s on-chip memory is much cheaper than GenASM’s
due to the memory footprint and bandwidth reductions

(uses 18x less chip area and 18x less power)

Scrooge uses 3.6x less chip area
and 2.1x less power than a GenASM ASIC

• Throughput sensitivity to each algorithmic improvement

• Thread scaling results

• Rigorous accuracy analysis

• Sensitivity analysis of throughput and accuracy

• ASIC breakdown

More in the Paper: Evaluation

47

More in the Paper

48Scrooge on arXiv Scrooge on GitHubScrooge in Bioinformatics

Outline

49

Background1
Analysis of GenASM2
Scrooge Algorithm3

Scrooge Implementations4
Evaluation5
Conclusion6

50

Motivation

Pairwise sequence alignment (PSA) is computationally costly and
common step in bioinformatics pipelines. GenASM is a promising
candidate for efficient PSA. For example, its ASIC implementation is
up to 10,000x faster than prior software aligners.

Conclusion

Scrooge
•Three novel algorithmic improvements address GenASM’s inefficiencies
•Efficient open-source CPU and GPU implementations

Key Results

Scrooge consistently outperforms GenASM
• 2.1x speedup over GenASM on CPU
• 5.9x speedup over GenASM on GPU
• 3.6x better area efficiency than GenASM on ASIC
Scrooge consistently outperforms state-of-the-art CPU and GPU
baselines, including KSW2, Edlib, and BiWFA

Goals

• Build a practical and efficient implementation of the GenASM
algorithm for multiple computing platforms
• Compete with state-of-the-art pairwise sequence aligners

like Edlib, KSW2, and BiWFA

Scrooge
A Fast and Memory-Frugal Genomic Sequence Aligner

for CPUs, GPUs, and ASICs

Joël Lindegger
Damla Senol Cali, Mohammed Alser, Juan Gómez-Luna,

Nika Mansouri Ghiasi, Onur Mutlu

April 14th 2023
BIO-Arch

52

Backup Slides

ASIC Breakdown

53

Scrooge has insignificant
computation overheads

Significant resource savings
from memory footprint

and bandwidth reductions

Scrooge uses 3.6x less chip area
and 2.1x less power than a GenASM ASIC

GenASM-DC Algorithm

54

Fulls Roofline Models

55

Bitvector Interpretation

56

CPU Thread Scaling

57

GPU Thread Scaling

58

CPU Optimization Sensitivity

59

Accuracy Comparison

60

Accuracy Sensitivity to Window Size W

61

Accuracy Sensitivity to Window Overlap O

62

Failure Mode for Too Small Window Size W

63

Failure Mode for Too Small Window Size W

64
Correct Alignment

Too Small
Window Size W

Long Read Dataset (Ground Truth)

65

Long Read Dataset

66

Short Read Dataset

67

