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What is Precision Health?

an emerging approach for disease treatment and prevention that takes
into account individual variability in genes, environment, and lifestyle
for each person ¥

“Doctors bave always recognized that every patient is unique, and doctors bave always tried to tailor their treatments as

best they can to individuals. You can match a blood transfusion to a blood type — that was an important discovery. What if

matching a cancer cure to our genetic code was just as easy, just as standard? What if figuring out the right dose of medicine

was as simple as taking our temperature?”

- President Obama, January 30, 2015

National Institutes
of Health




What is Precision Health?
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Precision Health Platform
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System Design Considerations
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Sequencing is Key Ingredient

of Precision Health




Exponential Growth in Genome Sequencing
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Sequencing Costs have Plummeted

Cost per Human Genome
$100,000,000

$10,000,000

Moore’s Law
$1,000,000

$100,000

$10,000

National Human Genome
Research Institute

genome.gov/sequencingcosts
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Exploding Sequencing Applications
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Acceleration Study: Whole Genome Sequencing
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Read Alignment: GenAx
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Read Alignment: SeedEx
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Read Alignment: ERT
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https://github.com/bwa-mem2/bwa-mem2/tree/ert

ERT software integration with Broad
Institute / Intel’s BWA-MEM 2

& bwa-mem2 [ bwa-mem2 ®Unwatch ~ 39 # Unstar 386 % Fork 47

<> Code () Issues 12 1) Pull requests 1 (*) Actions () Security |~ Insights

¥ master ~ # 5branches © 4 tags Go to file Add file ~ About

The next version of bwa-mem

yuk12 added info about ert solution in readme 25e3ccd 8 daysago O 219 commits
bioinformatics genomics

bwa-mem2 seeding speedup with Enumerated Radix Trees (Code in ert
branch)

The ert branch of bwa-mem?2 repository contains codebase of enuerated radix tree based acceleration of bwa-
mem?2. The ert code is built on the top of bwa-mem2 (thanks to the hard work by @arun-sub). The following are the
highlights of the ert based bwa-mem?2 tool:

-

. Exact same output as bwa-mem(2)

N

. The tool has two additional flags to enable the use of ert solution (for index creation and mapping), else it runs
in vanilla bwa-mem2 mode
3. It uses 1 additional flag to create ert index (different from bwa-mem2 index) and 1 additional flag for using that
ert index (please see the readme of ert branch)
4. The ert solution is 10% - 30% faster (tested on above machine configuration) in comparison to vanilla bwa-
mem?2 -- users are adviced to use option -K 1000000 to see the speedups

(&)

. The memory foot print of the ert index is ~60GB
6. The code is present in ert branch: https://github.com/bwa-mem2/bwa-mem?2/tree/ert

BWA-MEM is the de-facto genomics read alignment tool used by
researchers and practitioners worldwide 15



Sorting/Duplicate Marking Optimizations

Duplicate reads

+ 1/0O bandwidth bound. Optimized counting sort based multi-thread CPU implementation

Increasing genome
coordinate ‘ ‘ ‘

‘ ‘ Sorting + Mark
Duplicates

» Same results as Picard SortSam and Picard MarkDuplicates

* Runtime: +3 min for 50x coverage WGS alignments (56 thread CPU)
Memory: ~75 GB memory

16



Variant Calling: pairHMM Acceleration

On-demand Job Scheduler
-

Only need to

Reduce idle machines due to work load imbalancef
Haplotype between pruning machine & precise machine
compute this . Inter Job
accurately A T G C A T T T T T Parallelis Memory
A J Pruning Machine (Approximate Calculation) Output
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—-l Read Regfile |-
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—-|Haplotype Regfilel-o Scan” machines .
C Intra Job .
N—— B — Arbiter |
A Arb

Read

. Inter Job
N Parallelis ,
Result = sum of last row Dominated by this Precise Machine (Floating Point) “Scan” machines \
alignment
- Output

Squares need to be Squares processed —-| Read Regfile |-° lower bound

processed by floating by pruning Floating Point

point machine machine [=gHispiatype Beplie PE

—oI Unpruned Cells |-

. . : Pruning pairHMM
Accelerator Architecture
Pruning Algorithm ASIC (40nm)
Bit equivalent 43X fewer cells computed in precise floating point

output 8.3x higher throughput (GCUPS) than floating-point ASIC of the same area
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Why Accuracy Matters?

Human ~ Chimpanzee
96%

Human ~ Cat
90%

Human ~ Human
99.9%

Human ~ Cow
80%

Human ~ Banana
50-60%

Slide credit: Onur Mutlu,"Accelerating Genome Analysis: A Primer on an Ongoing Journey"
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Effect of G->A variant in the CYP2C19 gene
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Acceleration Study: Whole Genome Sequencing
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Sequencing Technologies: Evolution

lllumina Sequencing by Synthesis
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lllumina NovaSeq ®6 060

6000, 2021

[llumina Genome

Analyzer, 2005
Read length: 100-350bp

1 Gbases/per day 3 Tbases/per day Per base inaccuracy: 0.1%

1000x increase in
sequencing
machine throughput

Nanopore Sequencing

Read length: 1kb-1Mbp
Per base inaccuracy: 1-15%

1000x increase in
sequencing
fragment length

10 - 100x increase
' in sequencing
error rate

Credits: lllumina, DataBase Center for Life Science (DBCLS), https://doi.org/10.7875/togopic.2020.01, Wkipedia DMLapato 22

https://www.ecseq.com/support/ngs/do_you have two colors or four colors in lllumina



https://doi.org/10.7875/togopic.2020.01
https://www.ecseq.com/support/ngs/do_you_have_two_colors_or_four_colors_in_Illumina

Nanopore Sequencing is poised to revolutionize molecular diagnostics

* Nanopore sequencing feeds DNA strands through Double Stranded DNA l Basecalled read
a biological pore in a membrane o ?

Basecaller
Algorithm

* Current disruptions across the membrane are
recorded

—— Nanopore

* Current disruptions correspond to individual DNA
base-pairs (A, T, G, C)

Current "squiggle”

—— Disrupted lon Current

"’ﬁ‘?ﬁ e Flowcell

* Thousands of parallel pores are
embedded into a “flowcell”

MinlION MKkl

\ \\“““\‘ .
V device » Flowcells are run via a hand-held,

N" Ceanm USB-powered device called a MinION

https://www.sciencedirect.com/science/article/pii/$1672022916301309



Nanopore

Sequencing Lab
at UM EECS

Biosafety Level -2 Certification for tissue and RNA work

Standard molecular biology equipment
Small -20C freezer
Enables tight coupling of informatics with nanopore sequencer



Intra-operative sequencing for accurate cancer diagnostics

* Intra-operative histology can help Frozen Section Histology can return a diagnosis in ~20-40 min
guide surgical decision making and
combine surgeries

* Histology is subjective, and does not
contain molecular information

* Genetic information is becoming
increasingly important for diagnosis
and targeted, personalized treatment!

“For the first time, the WHO classification of CNS
The 2016 World Health Organization Classification of Tumors  tumors uses molecular parameters in addition to

of the Central Nervous System: a summary histology to define many tumor entities, thus

David N. Louis' - Arie Perry? - Guido Reifenberger™ - Andreas von Deimling** - formulating a concept for how CNS tumor diagnoses

Dominique Figarella-Branger® - Webster K. Cavenee’ - Hiroko Ohgaki® « .
Otmar D. Wiestier® - Panl Klelhnes™® David W. ERtsonl! should be structured in the molecular era.”

Can we sequence a tumor’s DNA within the intra-operative time frame? (i.e. <1hr)



How does a sequencing-based molecular diagnostic work?
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Target amplification uses the Polymerase Chain Reaction (PCR) to exponentially amplify a region of the genome
* PCR exponentially amplifies a small cancer-relevant gene target that might contain a mutation
* Amplified targets can then be sequenced to determine if a mutation is present

| = DNA Extraction @ Target Amplification ELibrary Preparation OSequencing @ Analysis ‘
Baseline
Protocol

0 10 20 30 40 50 60 70 80 90 100

Time (minutes)

Target amplification is the obvious bottleneck. How can we attack this?



Threshold Sequencing

Co-optimize amplification time and sequencing time to minimize time-to-result

1) Build a model to estimate 2) Augment model with 3) Run diagnostic with final
total diagnostic time experimentally derived parameters optimal parameters
40 e SUppOrt = VVAF
Ttotal = Tump + Tseq BPCR Time @ Sequencing Time (250x Depth) 500 50%
3% = 450 { 45%
= 1
Tump = Tinit + Tcycle XN cycle + Tfinal = 30 + 400 40%
£ < 350 1 35%
~ 25 rom==== ~ <
2Ncycle g |' \I < 300 + 30%
F target — N E 20 | | §- 250 Diagnostic Threshold A 25%
o Newde L N background g 15 : : S 200 20%
o | | S 150 1 15%
1 ! : 2 100 { 10%
Tseq = N, depth X 5 ! ! < o,
N, pores X Rsumple xXF target | 1 50 + 5%
0 ! ! 0 0%
20 22 \24 26 28, 30 0 056 1 15 2 25 3 35 4 45 5 55
PCR Cycles Sequencing Time (min)

Co-optimization allowed for a world-first demonstration of a sub-1 hour sequencing-based diagnostic

A

. Target ' Library ; !
DNA Extract
raction Amniification Preparation Sequencing ‘ Informatics =
. - \ . | \ . 52 min
10 min 26 min 11 min 5 min Real-Time Diagnostic

but target amplification is still a large bottleneck...



Loop-Mediated Isothermal Amplification (LAMP) Technology

N=1 target
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https://doi.org/10.1016/j.trac.2019.01.015

N=6 concatemer reduce diagnostic time



LAMPrey: a new bioinformatics tool to analyze
and “polish” LAMP concatemer product

a _
LAMP Concatemer Schema File
ONT Library preparation sequences Primer Sequences, target sequence,
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r A N r A N
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" ” s H H
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Sequence of Interest
Alignment

. ONT Adapter Sequence
LAMPrey is able to recover about R
50% more information than

.. . . Sequence Chaining to
traditional informatics tools b eniy subReads
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Information from each sub-read can G SubResd Algnmento U

Gene Target —

be combined to form a more ‘ TargelRegion Reference | © )

confident base call (polishing) Subread 1 T
resulting |r? a morg rapid and o ? Il s
accurate diagnostic
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Sub-Read Pileup Hotspot Locus Pileup: AaC
Base Call: A




LAMPrey + Threshold Sequencing = <30min Sequencing-based Diagnostic

Experimentally informed

- . Final LAMP diagnostic result LAMPrey benefit
LAMP diagnostic model
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LAMPrey and other optimizations allowed for a world-first demonstration
of a sub-30 minute sequencing-based diagnostic

\ N\ \ \ \ N\ \ ¥

N T Target A N Libra . N\ :
> DNA Extraction ) ) il » 1/ > > Sequencing > ) Informatics
y V 4 Amplification / / Preparation / / Y 4 / =
: ' : e : o ) - ) <30 min
5.5 min 15 min 5 min 3.5min Real-Time 3 .
Diagnostic

Open source: https//www.github.com/jackwadden/lamprey



LAMPrey + Threshold Sequencing = <30min Sequencing-based Diagnostic

E DNA Extraction @Target Amplification  ®Library Preparation ©Sequencing ®Analysis

Baseline Protocol

Baseline + Rapid Library Prep .
Sets world record for fastest time-to-result

Baseline + Rapid Extraction

Optimized PCR End-point

N - e e |

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
End-to-end Time (minutes)

LAMPrey and other optimizations allowed for a world-first demonstration
of a sub-30 minute sequencing-based diagnostic
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: . 9 Target A N Library . & .
DNA Extraction )
‘ ! / / Amplification / Preparation / Seqtiencing Y 4 ICETRECS =
5.5 min 15 min 5 min 3.5 min Real-Time =S8

Diagnostic



How Can You
Kick-Start
Precision
Health

Research?




UNIVERSITY OF
MICHIGAN

Open-source:

https://github.com/arun-sub/genomicsbench

12 computationally intensive
kernels drawn from well
maintained software tools

Covers the major steps of
modern sequence analysis
pipelines

Includes both short and long read
analysis algorithms

Small/large input datasets

33


https://github.com/arun-sub/genomicsbench

Team - Part of University of Michigan Precision
Health Initiative
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“Discover the genetic, lifestyle and environmental factors that influence a population’s health
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Work from Awesome Group of Fantastic Students!!

Arun
Subramaniyan

Daichi Fujiki Jack Wadden Xiao Wu Timothy Dunn Hari Sadasivan Yufeng Gu

“Discover the genetic, lifestyle and environmental factors that influence a population’s health

and provides personalized solutions that allow individuals to improve their health and wellness.”  PRECISION HEALTH
UNIVERSITY OF MICHIGAN



Thank You!

Reetu Das
Associate Professor
EECS Department




