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What is Precision Health?
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an emerging approach for disease treatment and prevention that takes 
into account individual variability in genes, environment, and lifestyle
for each person

“ “



What is Precision Health?

3

One Size Fits All x Precision Medicine ✓
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System Design Considerations
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Sequencing is Key Ingredient 
of Precision Health



Exponential Growth in Genome Sequencing
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Credits: [Stephens et al . PLOS Bio, 2015] [Illumina] [Oxford Nanopore] [10x Chromium][Biorender.com]
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Sequencing Costs have Plummeted
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Exploding Sequencing Applications
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Acceleration Study: Whole Genome Sequencing
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Read Alignment: GenAx
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Read Alignment: SeedEx
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Read Alignment: ERT
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ERT software integration with Broad 
Institute / Intel’s BWA-MEM 2
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BWA-MEM is the de-facto genomics read alignment tool used by 
researchers and practitioners worldwide



Sorting/Duplicate Marking Optimizations

• I/O bandwidth bound. Optimized counting sort based multi-thread CPU implementation

• Same results as Picard SortSam and Picard MarkDuplicates

• Runtime: +3 min for 50x coverage WGS alignments (56 thread CPU)
Memory:  ~75 GB memory

16

Increasing genome 
coordinate

Duplicate reads

Sorting + Mark 
Duplicates



Variant Calling: pairHMM Acceleration
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Pruning Algorithm Pruning pairHMM
ASIC (40nm)

Accelerator Architecture

fewer cells computed in precise floating point43x
8.3x higher throughput (GCUPS) than floating-point ASIC of the same area

Bit equivalent 
output



Why Accuracy Matters?
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The Genetic Similarity Between Species
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99.9%

96%
Human ~ Chimpanzee

Human ~ Human

90%
Human ~ Cat

80%
Human ~ Cow

50-60%
Human ~ Banana

Slide credit: Onur Mutlu,"Accelerating Genome Analysis: A Primer on an Ongoing Journey"
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Acceleration Study: Whole Genome Sequencing
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Acceleration 
Study –
Ultra Rapid 
Cancer 
Diagnosis



Sequencing Technologies: Evolution

22Credits: Illumina, DataBase Center for Life Science (DBCLS), https://doi.org/10.7875/togopic.2020.01, Wkipedia DMLapato
https://www.ecseq.com/support/ngs/do_you_have_two_colors_or_four_colors_in_Illumina

10 - 100x increase 
in sequencing 

error rate 

Nanopore Sequencing

Read length: 1kb-1Mbp
Per base inaccuracy: 1-15% 

!1000x increase in 
sequencing 

fragment length

1000x increase in 
sequencing 

machine throughput

Illumina Genome 
Analyzer, 2005

Illumina NovaSeq
6000, 2021

Illumina Sequencing by Synthesis

Read length: 100-350bp
Per base inaccuracy: 0.1% 1 Gbases/per day 3 Tbases/per day

https://doi.org/10.7875/togopic.2020.01
https://www.ecseq.com/support/ngs/do_you_have_two_colors_or_four_colors_in_Illumina


https://www.sciencedirect.com/science/article/pii/S1672022916301309

• Nanopore sequencing feeds DNA strands through 
a biological pore in a membrane

• Current disruptions across the membrane are 
recorded

• Current disruptions correspond to individual DNA 
base-pairs (A, T, G, C)

• Thousands of parallel pores are 
embedded into a “flowcell”

• Flowcells are run via a hand-held, 
USB-powered device called a MinION

Nanopore Sequencing is poised to revolutionize molecular diagnostics



Nanopore 
Sequencing Lab 
at UM EECS

• Biosafety Level -2 Certification for tissue and RNA work
• Standard molecular biology equipment
• Small -20C freezer
• Enables tight coupling of informatics with nanopore sequencer



Intra-operative sequencing for accurate cancer diagnostics

• Intra-operative histology can help 
guide surgical decision making and 
combine surgeries

• Histology is subjective, and does not 
contain molecular information

• Genetic information is becoming 
increasingly important for diagnosis 
and targeted, personalized treatment!

“For the first time, the WHO classification of CNS 
tumors uses molecular parameters in addition to 
histology to define many tumor entities, thus 
formulating a concept for how CNS tumor diagnoses 
should be structured in the molecular era.”

Frozen Section Histology can return a diagnosis in ~20-40 min

Can we sequence a tumor’s DNA within the intra-operative time frame? (i.e. <1hr)



How does a sequencing-based molecular diagnostic work?

• Target amplification uses the Polymerase Chain Reaction (PCR) to exponentially amplify a region of the genome
• PCR exponentially amplifies a small cancer-relevant gene target that might contain a mutation
• Amplified targets can then be sequenced to determine if a mutation is present

Target amplification is the obvious bottleneck. How can we attack this?



Threshold Sequencing

Co-optimization allowed for a world-first demonstration of a sub-1 hour sequencing-based diagnostic

Co-optimize amplification time and sequencing time to minimize time-to-result

but target amplification is still a large bottleneck…

1) Build a model to estimate  
total diagnostic time

2) Augment model with 
experimentally derived parameters

3) Run diagnostic with final 
optimal parameters



Loop-Mediated Isothermal Amplification (LAMP) Technology

Benefits
• LAMP amplifies targets much more 

rapidly than PCR (14min vs 26min)

• LAMP generates concatemeric 
reads that contain redundant, and 
complementary information

We leverage LAMP’s rapid amplification 
and redundant information to further 
reduce diagnostic time

Downsides
• Difficult to analyze and reason 

about complex product

• No LAMP specific bioinformatics 
tools

https://doi.org/10.1016/j.trac.2019.01.015

N=6 concatemer

N=1 target



LAMPrey: a new bioinformatics tool to analyze 
and “polish” LAMP concatemer product

LAMPrey identifies concatemer 
“sub-reads” in noisy amplicons

Information from each sub-read can 
be combined to form a more 
confident base call (polishing) 
resulting in a more rapid and 
accurate diagnostic

LAMPrey is able to recover about 
50% more information than 
traditional informatics tools 



LAMPrey + Threshold Sequencing = <30min Sequencing-based Diagnostic
Experimentally informed 
LAMP diagnostic model

Final LAMP diagnostic result LAMPrey benefit

LAMPrey and other optimizations allowed for a world-first demonstration 
of a sub-30 minute sequencing-based diagnostic

Open source: https//www.github.com/jackwadden/lamprey



LAMPrey + Threshold Sequencing = <30min Sequencing-based Diagnostic

LAMPrey and other optimizations allowed for a world-first demonstration 
of a sub-30 minute sequencing-based diagnostic

Sets world record for fastest time-to-result



How Can You 
Kick-Start 
Precision 
Health 
Research?
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Open-source:

https://github.com/arun-sub/genomicsbench

12 computationally intensive 
kernels drawn from well 
maintained software tools

Covers the major steps of 
modern sequence analysis 
pipelines

Includes both short and long read 
analysis algorithms

Small/large input datasets

https://github.com/arun-sub/genomicsbench


Team – Part of University of Michigan Precision 
Health Initiative

“Discover	the	genetic,	lifestyle	and	environmental	factors	that	influence	a	population’s	health	
and	provides	personalized	solutions	that	allow	individuals	to	improve	their	health	and	wellness.”

David Blaauw
Professor, UM, 
IEEE Fellow
Expertise: VLSI Design

Reetu Das
Assoc. Professor, UM
Sloan Fellow
ISCA and MICRO Hall of fame
Expertise: Systems

Satish Narayanasamy
Professor, UM

NSF CAREER
ISCA and ASPLOS Hall of fame
Expertise: Systems

Robert  Dickson
MD, UM
Expertise:
Pulmonary and 
Critical Care Medicine 

Jenna Wiens
Assoc. Professor, UM
MIT TR 35 under 35
Expertise: Machine Learning

Carl Koschmann
MD, UM
Expertise:
Pediatric 
Hematology/Oncology 



Work from Awesome Group of Fantastic Students!!

“Discover	the	genetic,	lifestyle	and	environmental	factors	that	influence	a	population’s	health	
and	provides	personalized	solutions	that	allow	individuals	to	improve	their	health	and	wellness.”

Daichi FujikiArun
Subramaniyan Jack Wadden Xiao Wu Timothy Dunn Hari Sadasivan Yufeng Gu
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