TargetCall: Eliminating the Wasted Computation in Basecalling via Pre-Basecalling Filtering

Meryem Banu Cavlak, Gagandeep Singh, Mohammed Alser, Can Firtina, Joel Lindegger, Mohammad Sadrosadati, Nika Mansouri Ghiasi, Can Alkan, Onur Mutlu

bioRxiv

Code
TargetCall Summary

Motivation: Basecalling consumes up to 84.2% of total execution time and bottlenecks the genome analysis pipeline.

Problem: The majority of the reads do not match the reference genome (i.e., useless reads) and thus are discarded after basecalling, wasting the basecalling computation.

Goal: Eliminating the wasted computation in basecalling while maintaining high accuracy, scalability and adaptability.

Key Idea: Filter out useless reads before basecalling with a highly accurate and high-performance pre-basecalling filter.

TargetCall: New pre-basecalling filter
- **LightCall:** A light-weight basecaller that computes noisy reads with high performance.
- **Similarity Check:** Computes the similarity of the noisy read to the reference genome.

Results:
- Improves the end-to-end performance of basecalling by 3.3× over the state-of-the-art basecaller by filtering out 94.7% of the useless reads.
- Achieves better performance, throughput, recall and precision than the state-of-the-art targeted sequencing approaches.
TargetCall Outline

- Background and Motivation
- TargetCall: Pre-Basecalling Filter
- Use Cases
- Evaluation
- Conclusion
Genome Sequence Analysis

Genome Sequencing: Enables us to determine the order of the DNA sequence in an organism’s genome

- Plays a **pivotal role** in:
 - Precision medicine
 - Outbreak tracing
 - Understanding of evolution

Nanopore Sequencing: a **widely used** sequencing technology that

- Produces **long reads** (i.e., 10Kbp-100Mbp)
- Has **high throughput**
- Is **low cost**
Option 1: Traditional Pipeline

Traditional Nanopore Sequence Analysis Pipeline

- **Genome sequencing**
- **Basecalling**
- **Read Mapping**

Reference genome: ATGGACATGCAGCAAAC

Basecalling consumes **up to 84.2%** of the execution time [Bowden+ 2019]

Execution Time Breakdown

- Basecalling
- Downstream Analysis
Option 1: Traditional Pipeline

Traditional Nanopore Sequence Analysis Pipeline

- **Genome sequencing**
- **Basecalling**
- **Read Mapping**

Basecalling is a **major bottleneck** in nanopore sequence analysis pipeline

Basecalling consumes up to 84.2% of the execution time [Bowden + 2019]

Execution Time Breakdown

- **Basecalling**
- **Downstream Analysis**
Key Observation

Majority of the basecalled reads are **discarded** in the later downstream analysis.

SARS-CoV-2 Genome Assembly:
[Dunn+, 2021]

A read is **useless** if it does **not match** the reference genome.
Key Observation

Majority of the basecalled reads are **discarded** in the later downstream analysis.

SARS-CoV-2 Genome Assembly:
[Dunn+, 2021]

Useless reads **waste basecalling computation** in traditional pipeline.

A read is **useless** if it does **not match** the reference genome.
Option 2: Targeted Sequencing

Traditional Pipeline: Sequence all reads

<table>
<thead>
<tr>
<th>Genome Sequencing</th>
<th>Basecalling</th>
<th>Read Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference genome</td>
<td>ATGGACTTTTAGCAAAAC</td>
<td>Mapped</td>
</tr>
</tbody>
</table>

Targeted Sequencing: Selectively sequence useful reads

<table>
<thead>
<tr>
<th>Targeted Sequencing</th>
<th>Basecalling</th>
<th>Read Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference genome</td>
<td>ATGGACTTTTAGCAAAAC</td>
<td>Mapped</td>
</tr>
</tbody>
</table>

Nanopore sequencers can stop sequencing useless reads

SAFARI
Option 2: Targeted Sequencing

Traditional Sequencing: Sequence all reads

Targeted Sequencing: Selectively sequence reads from the target reference

Nanopore sequencers can stop sequencing of useless reads

Targeted sequencing requires a method to identify useless reads
Targeted Sequencing Limitations

Current targeted sequencing approaches to identify useful reads suffer at least from one of the following:

- **Low Sensitivity**

 Falsely reject many useful reads

- **Poor Scalability**

 Have poor performance and accuracy for large reference genomes

- **Lack of Adaptability**

 Require neural network training for each genome sequencing use case
Targeted Sequencing Limitations

Current targeted sequencing approaches to identify useful reads suffer at least from one of the following:

1. **Low Sensitivity**
 - Falsely reject many useful reads

2. **Poor Scalability**
 - Have poor performance and accuracy for large reference genomes

3. **Lack of Adaptability**
 - Require neural network training for each genome sequencing use case

Targeted sequencing approaches are not robust for eliminating the wasted computation in basecalling.
Our Goal

Eliminate the wasted computation in basecalling while maintaining high sensitivity in keeping useful reads, scalability to large reference genomes and adaptability.
Our Proposal: Pre-Basecalling Filter

Option 1 - Traditional Pipeline:
Sequence & basecall all reads

Option 2 - Targeted Sequencing:
Sequence selectively

Our Proposal - Pre-Basecalling Filter:
Selectively basecall useful reads
TargetCall Overview

TargetCall

LightCall
Basecaller to compute noisy reads

Similarity Check
Compares noisy reads to reference genome

useful?

useful
Basecaller

useless
Stop Analysis
TargetCall Overview

TargetCall has:

- **High Sensitivity**
 with its highly accurate Similarity Check component

- **Good Scalability**
 with a reference genome size independent LightCall model

- **Adaptability**
 with a generic LightCall model that does not require NN retraining
TargetCall Overview

TargetCall has:

- **High Sensitivity**
 with its highly accurate Similarity Check component.

- **Adaptability**
 with a generic LightCall model that does not require NN retraining.

 TargetCall is a **robust** solution for eliminating the wasted computation in basecalling.
LightCall

A light-weight basecaller that produces noisy reads

Basecaller

LightCall

TargetCall

LightCall Similarity Check
LightCall

Design based on by simplifying the state-of-the-art basecaller model architectures while maintaining most accuracy benefits.

SOTA basecaller: LightCall:

3 simplification steps:

1. Reduce channel sizes of convolution layers
2. Remove skip connections
3. Reduce number basic convolutional blocks
LightCall

LightCall is a series of convolutional blocks

Each block has 1 or 2 such components
Similarity Check

noisy read: ACCTAGACCA
ref. genome: GACTACGTAGATCATAACG

similar

• Similarity Check module: minimap2

• LightCall + Similarity Check:
 Up to 99.45% sensitive in keeping useful reads
 • 0.55% can be tolerated via sequencing-depth-of-coverage
TargetCall Outline

Background and Motivation

TargetCall: Pre-Basecalling Filter

Use Cases

Evaluation

Conclusion
TargetCall Use Cases

Show the scalability and adaptability of TargetCall:

1. **SARS-CoV-2 Detection**
 - Reference Genome: **Small** (SARS-CoV-2)
 - Reads: SARS-CoV-2 & Human

2. **Viral Detection**
 - Reference Genome: **Complex** (Viral)
 - Reads: Bacterial & Viral

3. **Sepsis Detection**
 - Reference Genome: **Large** (Human)
 - Reads: Bacterial & Human
1. Benefits of Pre-Basecalling Filtering
 - **Baseline:** Bonito
 - **Methodology:** Compare Bonito and TargetCall
 - **Evaluation Metric:** Basecalling speedup

2. Comparison against Targeted Sequencing
 - **Baseline:** UNCALLED [Kovaka+, 2020] & Sigmap [Zhang+, 2021]
 - **Methodology:** Repurpose labelling mechanism of the targeted sequencing approaches as pre-basecalling filters, compare:
 - **Evaluation Metric:** Execution time, recall and precision
Evaluation Methodology - Datasets

Read Sets:
- 5 different read sets from various organisms
 - 4 read sets are sampled from prior work [Wick+ 2019, Zook+ 2019, CADDE 2020]
 - 1 simulated read set using DeepSimulator
- We open source the datasets

Reference Genomes:
- 4 different reference genomes with various
 - Reference genome size
 - Ratio of useful reads
Evaluation Methodology - System

We evaluate **TargetCall** using:
- NVIDIA A100 and TITAN V GPU for **LightCall**
- AMD EPYC 7742 CPU with \(\sim 0.2 \text{ TB DDR4 DRAM} \) for **Similarity Check**

We evaluate **Sigmap** and **UNCALLED** using:
- AMD EPYC 7742 CPU with \(\sim 1 \text{ TB DDR4 DRAM} \)

Sigmap and **UNCALLED** require more than 0.2 TB of DRAM for large reference genomes
On average, TargetCall provides **3.3x basecalling speedup** over Bonito.
Comparison to SOTA - Performance (1/3)

TargetCall provides 1.5x/9.7x speedup over UNCALLED/Sigmap
TargetCall provides **higher** speedup improvement with a large reference genome:

- **13.3x speedup** over Sigmap
- UNCALLED is **inapplicable**: cannot generate the index
Comparison to SOTA - Recall (2/3)

TargetCall provides 23.2% / 3.1% better recall over Sigmap / UNCALLED on average. TargetCall’s recall is 99.1% on average.
TargetCall’s recall benefits improve (21.9%-10.3%) with increasing reference genome size.
Comparison to SOTA - Recall (2/3)

Sepsis use case doesn’t measure the recall for finding human reads

The recall for finding human reads:
- Sigmap/UNCALLED: **40.6%/53.7%**
- TargetCall: **96.2%**
Comparison to SOTA - Recall (2/3)

TargetCall **consistently** provides high recall for **all** reference genome sizes tested.

The recall for finding human reads:
- Sigmap/UNCALLED: 40.6%/53.7%
- TargetCall: 96.2%

SAFARI
Comparison to SOTA - Precision (3/3)

On average, TargetCall’s **precision** is **92.1%**
More Details in the Paper

• Details of targeted sequencing

• Details of LightCall design

• More details on evaluation methodology

• More evaluation results
 • **Basecalling speedup, recall** and **precision** of different LightCall architectures to finalize the TargetCall design
 • **End-to-end accuracy analysis** using relative abundances
 • **End-to-end performance** results including variant calling
 • **Throughput** comparison: 42x/1124x over Sigmap/UNCALLED
 • **Peak memory** discussion
More Details in the Paper

TargetCall: Eliminating the Wasted Computation in Basecalling via Pre-Basecalling Filtering

Meryem Banu Cavlak¹ Gagandeep Singh¹ Mohammed Alser¹ Can Firtina¹ Joël Lindegger¹
Mohammad Sadrosadati¹ Nika Mansouri Ghiasi¹ Can Alkan² Onur Mutlu¹

¹ETH Zürich ²Bilkent University

bioRxiv

Code
TargetCall - GitHub Page

Artifacts are open-sourced

DOI 10.5281/zenodo.7335545

https://github.com/CMU-SAFARI/TargetCall
TargetCall Summary

TargetCall: An accurate, scalable and adaptable pre-basecalling filter:

- **LightCall:** A light-weight basecaller that computes noisy reads with high performance
- **Similarity Check:** Computes the similarity of the noisy read to the reference genome

Results:

- TargetCall significantly improves basecalling performance for three sample use cases by filtering out majority of the useless reads
- Achieves better recall, precision, performance and throughput than the state-of-the-art targeted sequencing approaches repurposed as pre-basecalling filters
TargetCall: Eliminating the Wasted Computation in Basecalling via Pre-Basecalling Filtering

Meryem Banu Cavlak, Gagandeep Singh, Mohammed Alser, Can Firtina, Joel Lindegger, Mohammad Sadrosadati, Nika Mansouri Ghiasi, Can Alkan, Onur Mutlu

bioRxiv Code
Backup Slides
Targeted Sequencing

Set of techniques to discard off-target reads during sequencing

Raw Signal Comparison
- Sigmap
- SquiggleFilter

Sequence Comparison
- ReadFish
- UNCALLED

Machine Learning
- SquiggleNet
- BaseLess

Some of these works can be partially repurposed as pre-basecalling filters.
Basecalling

Basecallers use complex DNN models

1. They split the raw signals into fixed length chunks

2. They basecall chunks independently

 ACGTA GAGGC TCTC GACTCA

3. They stitch the chunks back

 ACGTAGAGGCTCTCGACTCA
Evaluation – System Configuration

TargetCall evaluation system:

<table>
<thead>
<tr>
<th></th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>AMD EPYC 7742 [70]</td>
</tr>
<tr>
<td></td>
<td>@2.25GHz, 4-way SMT [71]</td>
</tr>
<tr>
<td>Cache-Hierarchy</td>
<td>32×32 KiB L1-I/D, 512 KiB L2, 256 MiB L3</td>
</tr>
<tr>
<td>System Memory</td>
<td>4×32GiB RDIMM DDR4 2666 MHz [72] PCIe 4.0 ×128</td>
</tr>
<tr>
<td>OS details</td>
<td>Ubuntu 21.04 Hirsute Hippo [73], GNU Compiler Collection (GCC) version 10.3.0 [74]</td>
</tr>
<tr>
<td>GPU</td>
<td>NVIDIA TITAN V [75] 5120 CUDA Cores@1.2GHz, 12GiB HBM2</td>
</tr>
<tr>
<td></td>
<td>NVIDIA System Management Interface (NVIDIA-SMI) version 510.47.03 [76]</td>
</tr>
<tr>
<td></td>
<td>NVIDIA CUDA Compiler Driver (NVCC) version 11.1.105 [77]</td>
</tr>
</tbody>
</table>
Evaluation - Training Setting

Dataset for training and validation: publicly available ONT dataset sequenced using MinION Flow Cell (R9.4.1)

Optimizer: Adam with
- learning rate: 2e-3
- beta value: 0.999
- weight decay: 0.01
- epsilon: 1e-8
TargetCall provides up to 99.45% recall.
TargetCall Design - Recall (1/6)

TargetCall’s recall improves as the model complexity of LightCall increases.
TargetCall Design - Precision (2/6)

TargetCall can filter out up to 96.03% of useless reads.
TargetCall Design - Performance (3/6)

TargetCall provides up to 3.31x basecalling speedup.
TargetCall’s performance **improves** with decreasing LightCall complexity until the **filtering precision** is **too low**
TargetCall Design - EtE Accuracy (4/6)

<table>
<thead>
<tr>
<th>Model Name</th>
<th>Average RA Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$LC_{Main} \times 2$</td>
<td>0.03%</td>
</tr>
<tr>
<td>LC_{Main}</td>
<td>0.08%</td>
</tr>
<tr>
<td>$LC_{Main/2}$</td>
<td>0.23%</td>
</tr>
<tr>
<td>$LC_{Main/4}$</td>
<td>0.91%</td>
</tr>
<tr>
<td>$LC_{Main/8}$</td>
<td>72.19%</td>
</tr>
</tbody>
</table>

TargetCall affects the relative abundances *slightly*.
TargetCall provides up to 3x end-to-end speedup over the entire genome analysis pipeline including variant calling.
LC-main provides the best recall-performance trade-off
Comparison to SOTA - Throughput (4/4)

LightCall provides **42x/1124x** more throughput over Sigmap/ UNCALLED.
Comparison to SOTA - Throughput (4/4)

LightCall’s throughput is consistently high for all reference genome sizes tested.

LightCall provides 42x/1124x more throughput over Sigmap/ UNCALLED.
Comparison to SOTA - Throughput (4/4)

LightCall’s high throughput is not reflected to performance:
1. TargetCall processes entire read
2. LightCall and Similarity Check are not pipelined

TargetCall’s benefits can be further amplified by
1. Chunk based early filtering
2. Pipelining LightCall and Similarity Check