Bachelor’s / Master’s / Semester Project

Leveraging and Optimizing Heterogeneous Computing Systems

The end of Moore’s law created the need for turning computers into heterogeneous systems, i.e., composed by multiple types of processors that can suit better different types of workloads or parts of them. More than a decade ago, Graphics Processing Units (GPUs) became general-purpose parallel processors, in order to make their outstanding processing capabilities available to many workloads beyond graphics. GPUs are key in the recent development of Machine Learning and Artificial Intelligence, which took unbearable training times before GPUs. Field-Programmable Processing Arrays (FPGAs) are another example of computing device that can deliver impressive benefits in terms of performance and energy efficiency. More specific examples are (1) a plethora of specialized accelerators (e.g., Tensor Processing Units for neural networks), and (2) near-data processing architectures (i.e., placing compute capabilities near or inside memory/storage).

Despite the great advances in the adoption of heterogeneous systems in recent years, there are still many challenges to tackle, for example:

- **Heterogeneous implementations** (GPU, FPGA) of modern applications from important fields such as bioinformatics, machine learning, graph processing, medical imaging, etc.
- **Scheduling techniques for heterogeneous systems** with different general-purpose processors and accelerators, e.g., kernel offloading, memory scheduling, etc.
- **Workload characterization and programming tools** that enable easier and more efficient use of heterogeneous systems.

We are looking for enthusiastic students who want to work hands-on on different software, hardware, and architecture projects for heterogeneous systems.

Requirements
- Outstanding programming skills (C/C++)
- Computer architecture background
- Interest in discovering why things do or do not work and solving problems
- Interest in making systems efficient and usable
- Strong work ethic

For background and example past studies please see:

- **GPU and FPGA implementations:**
 - Chai: heterogeneous benchmarks (ISPASS 2017).
 - GPU for medical imaging (CMPB 2020).
 - GateKeeper: FPGA for bioinformatics (Bioinformatics 2017).

- **Scheduling techniques:**
 - Thread scheduling (MICRO 2011).
 - DASH: memory scheduling (TACO 2016).

- **Programming tools and performance portability:**
 - Boyi: execution models for FPGAs (FPGA 2020).
 - Zorua: hardware support for GPU performance portability (MICRO 2016).
 - Locality descriptor: Cross-layer abstraction to express data locality on GPUs (ISCA 2018).

If you are interested, please email **Professor Onur Mutlu** and **Dr. Juan Gómez-Luna:**

omutlu@gmail.com
el1goluj@gmail.com
https://safari.ethz.ch
https://people.inf.ethz.ch/omutlu/